
CONTAINERS
Introduction to

eGuide

eGuide

http://techwell.com

3
Why Choose
Containerization?

5
Virtualization or
Containerization?
Choosing the Right
Strategy

6
Deploying, Running
Applications in Docker
Containers

7
How Docker Enables Agile
Software Development

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Exploring Containers:
Creating a Dockerfile

14
How Testers Can Use
Docker to Shift Left and
Automate Deployments

15
Additional Resources

2C O P Y R I G H T 2 0 2 0

I N T R O D U C T I O N T O C O N T A I N E R S eGuide
In the continuing search to accelerate development, test, and production cycles, organizations are looking more and more at the benefits
of containerization. Containers help software run reliably when moved from one environment to another. Containers effectively bundle an
entire runtime environment, rendering differences in OS distributions and underlying infrastructure non-issues. In addition, containers are
lightweight, modular, portable, and require significantly less overhead than server or machine virtualization.

Introduced in 2013, Docker has become the industry standard to build and share containerized apps. This eGuide is filled with information
and resources to help you explore the world of containers and whether or not they are right for your process.

Why Choose Containerization?
In recent years, containers have been adopted by many organizations. Why
use containerization? What are the advantages that have spurred its adoption?
Let’s look at some of the factors that govern the choice of containerization.

Virtualization or Containerization? Choosing the
Right Strategy
Virtualization and containerization are top two approaches when it comes
to enabling scalability, limiting overhead costs, and standardizing software de-
velopment, deployment, and management across multiple platforms. Careful
selection of one strategy over another helps an IT team become more agile
and responsive to ever-changing business needs. But how should they decide
which better fits their requirements?

Deploying, Running Applications in Docker Containers
Deploying and running applications in Containers is one of the hottest trends
in DevOps and IT today. Docker, a containerization platform that lets users
easily package, deploy, and manage their applications within containers, is
principally responsible for bringing containers to the mainstream. This article
provides information about what containers are, their relationship with
DevOps, and the benefits derived from container implementation.

How Docker Enables Agile Software Development
Docker has revolutionized how software is packaged, distributed, and de-
ployed, so it’s easy to see why it has become the de facto containerization
platform. But have you thought about how Docker actually makes software
development, testing, delivery, and deployment more agile? Let’s look at
how Docker inherently supports several of the founding principles of agile
software development.

Demystifying DevOps: A Day in the Life of a DevOps
Tester
The idea of working as a test specialist on a team using DevOps can feel intim-
idating. There are at least two technology stacks you need to be familiar with,
add a source code repository like Git, a few test frameworks, and a scripting
language, and you start to approach a useful skill set. This article outlines a
normal day of testing in DevOps for the author.

Exploring Containers: Creating a Dockerfile
Docker is currently the most popular containerization platform. Let’s look at
what goes into creating a Dockerfile, which could be used to build a runnable
Docker image.

How Testers Can Use Docker to Shift Left and Auto-
mate Deployments
There are multiple ways Docker can be to help with testing in continuous
delivery and integration (CD and CI). This article outlines some of the ways to
help facilitate that process.

Additional Resources

In this Containers eGuide

http://techwell.com

3
Why Choose
Containerization?

5
Virtualization or
Containerization?
Choosing the Right
Strategy

6
Deploying, Running
Applications in Docker
Containers

7
How Docker Enables Agile
Software Development

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Exploring Containers:
Creating a Dockerfile

14
How Testers Can Use
Docker to Shift Left and
Automate Deployments

15
Additional Resources

3C O P Y R I G H T 2 0 2 0

I N T R O D U C T I O N T O C O N T A I N E R S eGuide

In recent years, containers have been adopted by many organiza-
tions. While some other implementations of containers are available,
Docker is probably the one you’ve heard of, as it has become the
standard containerization platform.

Why use containerization? What are the advantages that have
spurred its adoption? Let’s look at some of the factors that govern
the choice of containerization.

Lightweight Modules
Docker containers are lightweight units of software that run in
isolation on a Docker Engine, which runs on an underlying operating
system. Each container has its own networking and file system.

A single Docker container does not fully use an underlying operating
system (OS), but makes use of a snapshot or a section of the operat-
ing system kernel. In this way, multiple Docker containers may run
on the same OS.

A single virtual machine, in contrast, uses a complete operating sys-
tem per application, and consequently, virtual machines may not be
able to use the underlying OS fully, resulting in an underutilized OS
system kernel. Infrastructure is better utilized with Docker containers.

Packaging and Dependency Encapsulation
A Docker image packages a complete software solution. A Docker
container is an instance of a Docker image, which specifies the soft-
ware to install, dependencies to install, and commands to run.

A single Docker container encapsulates all the dependencies needed to
run an application, thus eliminating the need to install the dependen-
cies separately. Software is easier to install and run using containers.

Why Choose Containerization?
By Deepak Vohra

http://techwell.com

3
Why Choose
Containerization?

5
Virtualization or
Containerization?
Choosing the Right
Strategy

6
Deploying, Running
Applications in Docker
Containers

7
How Docker Enables Agile
Software Development

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Exploring Containers:
Creating a Dockerfile

14
How Testers Can Use
Docker to Shift Left and
Automate Deployments

15
Additional Resources

4C O P Y R I G H T 2 0 2 0

I N T R O D U C T I O N T O C O N T A I N E R S eGuide

Developer Speed and Efficiency
Developer speed and efficiency is greatly improved with container-
ization. Software is easier to package, install, run, and manage.

Platform Independence
Docker containers are platform-independent and run the same on all
supported platforms of Linux and Windows distributions. Isolating
the software from the environment makes software portable across
local and cloud platforms.

Microservices Architecture
Monolithic architecture has its limitations in terms of its scope, exten-
sibility, and scalability. Modern applications are typically composed
of multiple services that need to be deployed and managed inde-
pendently but still be able to interact with each other, and a mono-
lithic architecture cannot provide independently deployed services.

Instead, a monolithic architecture requires that all applications or
services be deployed as a single unit. With dependencies between
services, individual services cannot be scaled or otherwise managed
independently in a monolithic architecture.

Containerization has made the microservices architecture feasible
with its modular structure. Multiple container-based services may be
deployed, scaled, and managed independently of each other and still
be able to interact.

Agility
Agile software is easier to improve through the employment of
continuous refactoring. Containerization, with its support for micro-
services, decouples the different components of an application and
makes it easier to modify or refactor individual components of an
application. Code for one service may be iterated, tested, and rede-
ployed independent of another service.

Scalability
Containers and microservices are easier to scale as compared to
monolithic software. As standalone containers are rarely used other
than for a small-scale, single-service deployment, container orches-
tration becomes essential. Several tools and platforms are available
for container orchestration to manage the containers’ provisioning,
scheduling, networking, and scaling.

Containerization provides several benefits and has fewer drawbacks
compared to other forms of application and services deployment.
Virtualizing pieces of an operating system through containerization
improves resource utilization, making your development and testing
more efficient.

Containerization provides several benefits and
has fewer drawbacks compared to other forms of
application and services deployment.

http://techwell.com

3
Why Choose
Containerization?

5
Virtualization or
Containerization?
Choosing the Right
Strategy

6
Deploying, Running
Applications in Docker
Containers

7
How Docker Enables Agile
Software Development

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Exploring Containers:
Creating a Dockerfile

14
How Testers Can Use
Docker to Shift Left and
Automate Deployments

15
Additional Resources

5C O P Y R I G H T 2 0 2 0

I N T R O D U C T I O N T O C O N T A I N E R S eGuide

Virtualization and containerization are top two approaches when it
comes to enabling scalability, limiting overhead costs, and standard-
izing software development, deployment, and management across
multiple platforms. These abilities are invaluable for both PaaS (plat-
form as a service) products and configuration of reproducible and
portable cross-platform development environments.

Careful selection of one strategy over another helps an IT team be-
come more agile and responsive to ever-changing business needs.
But how should they decide which better fits their requirements?

If the main requirements are development environment isolation
and being able to quickly create different VM (virtual machine) imag-
es, it is recommended to use lightweight containers using Docker, an
open source development platform. This containerization includes
the application and its dependencies.

In such cases, it is better to look for tools that reuse the host operat-
ing system kernel with containers. These run as isolated processes
on the host operating system and are not tied to any specific infra-
structure—essentially, they can run on any computer.

Docker’s containers are faster; use less CPU, RAM, and space; and
don’t add an overhead of maintaining a guest operating system in
parallel to an application and its libraries. The containers are config-
ured via files called Dockerfiles that communicate with each other on
a private network.

If your top requirement is virtual machines with full operating sys-
tem access and control over each guest operating system library,

you could leverage a solution like Vagrant, an open source software
product for building and maintaining virtual development environ-
ments independent of the host operating system.

Each environment runs on its own VM and is configured by a config
file called a Vagrantfile, which contains parameters to enable VM
configuration. For instance, you can set up automatic synchroniza-
tion of folders, redirect port traffic, and run custom commands upon
VM provisioning.

Vagrant VMs are also beneficial in cross-development scenarios where
development teams are geographically spread out and may not nec-
essarily have access to the same operating systems and versions. Us-
ers are able to create a baseline VM image with an application and its
dependencies. No matter which operating system is being used, the
VM image will be mounted as a separate operating system, providing
every team with uniform development environments.

One thing to be watchful for in this approach is that each VM includes
not just an application, its codebase, and installed libraries, but the
entire guest operating system as well, which could be large and re-
quire regular maintenance, patches, updates, and security fixes.

Virtualization and containerization each has its pros and cons that
need to be individually weighed against a given team’s composition,
the nature of the application under development, and the technol-
ogy stack utilized. Thinking through the decision will bring the ben-
efits of a scalable and sustainable development solution that works
for your specific needs.

Virtualization or Containerization?
Choosing the Right Strategy
By Kunal Chauhan

http://techwell.com

3
Why Choose
Containerization?

5
Virtualization or
Containerization?
Choosing the Right
Strategy

6
Deploying, Running
Applications in Docker
Containers

7
How Docker Enables Agile
Software Development

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Exploring Containers:
Creating a Dockerfile

14
How Testers Can Use
Docker to Shift Left and
Automate Deployments

15
Additional Resources

6C O P Y R I G H T 2 0 2 0

I N T R O D U C T I O N T O C O N T A I N E R S eGuide

Deploying and running applications in Containers is one of the
hottest trends in DevOps and IT today. Docker, a containerization
platform that lets users easily package, deploy, and manage their
applications within containers, is principally responsible for bring-
ing containers to the mainstream. This article provides information
about what containers are, their relationship with DevOps, and the
benefits derived from container implementation.

What are Containers?
Containerization is a virtualization method for encapsulating soft-
ware and the minimum set of resources and dependencies neces-
sary for that software to run. Containers encapsulate functionality
at a higher level than Virtual Machines (VMs) as they do not typically
contain a full operating system or services, rather they have a min-
imalist OS which makes them orders of magnitude smaller than a
typical VM (a number of containers can fit into a typical VM disc foot-
print) and makes them extremely efficient and portable. Containers,
with their stripped down OS and minimal services, are typically much
faster to deploy and initialize than a full VM. Containers are extreme-
ly flexible and facilitate higher workload densities for deployments
on bare metal, virtualized, and cloud based infrastructures.

What Do They Have to Do with DevOps?
Modern data center infrastructure management solutions are
helping to change software development. The increasing popularity
of virtualization technologies, including containerization, has made
infrastructure more available and flexible, supporting agile software
development processes and practices while increasing integration
and collaboration between development and operations. Containers

facilitate DevOps and Continuous Integration (CI), Continuous De-
ployment (CDep), and Continuous Delivery (CDel) by creating small-
er, isolated, and more efficient workload deployment packages that
are more easily managed and integrated with CI/CD build pipelines.

What Benefits Can One Gain from Containers?
• Resource utilization/efficiency (ROI)
• Standardization and consistency
• Workload Portability
• CI/CD efficiency and Rapid Deployment
• Cloud multi-platform support
• Security through isolation and segregation of applications and

resources

Deploying, Running Applications in
Docker Containers
By Jeff Pierce

http://techwell.com

3
Why Choose
Containerization?

5
Virtualization or
Containerization?
Choosing the Right
Strategy

6
Deploying, Running
Applications in Docker
Containers

7
How Docker Enables Agile
Software Development

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Exploring Containers:
Creating a Dockerfile

14
How Testers Can Use
Docker to Shift Left and
Automate Deployments

15
Additional Resources

7C O P Y R I G H T 2 0 2 0

I N T R O D U C T I O N T O C O N T A I N E R S eGuide

How Docker Enables Agile
Software Development
By Deepak Vohra

Docker is the de facto containerization platform, and it has revo-
lutionized how software is packaged, distributed, and deployed. It
runs software that is packaged and distributed as Docker images in
Docker containers that run on Docker Engine.

Docker has facilitated the adoption of the microservices architecture,
which decouples services components and facilitates making iter-
ative changes to software services. In fact, Docker makes software
development and deployment more agile. Here’s how.

Simple, Modular, Sustainable Design
Docker design is sustainable, as it makes a more efficient use of the
operating system compared to a virtual machine.

Virtual machines run on top of a hypervisor, which runs on top of an
underlying OS, as illustrated in figure 1. Each VM uses up a whole
guest operating system, which is not very efficient or sustainable in
terms of resource consumption.

A Docker container does not make use of a whole operating system,
instead only employing a snapshot of the underlying OS kernel, thus
making it more lightweight and sustainable in terms of resource
consumption. Multiple Docker containers run in isolation, with each
having its own file system and networking, on top of a single Docker
Engine using the same OS kernel, as illustrated in figure 2.

Docker design is simpler, modular, and less resource-intensive,
which encourages leaner, more agile development practices.

Efficient Software Delivery
Docker delivers pre-packaged software in the form of reusable, mod-
ular Docker images. More specifically, a Docker image is built from
a Dockerfile, which consists of instructions and commands to run in
order to download, install, and run the software.

Figure 1

Figure 2

http://techwell.com

3
Why Choose
Containerization?

5
Virtualization or
Containerization?
Choosing the Right
Strategy

6
Deploying, Running
Applications in Docker
Containers

7
How Docker Enables Agile
Software Development

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Exploring Containers:
Creating a Dockerfile

14
How Testers Can Use
Docker to Shift Left and
Automate Deployments

15
Additional Resources

8C O P Y R I G H T 2 0 2 0

I N T R O D U C T I O N T O C O N T A I N E R S eGuide

A Docker image is a set of layers, with each layer representing an
instruction or command in a Dockerfile. This takes away the hassle
of downloading and installing individual components of software.

Docker images may be pulled or downloaded from a repository,
such as Docker Hub, and are provided for Linux and Windows OS
and support several different types of architectures, including
amd64, arm32v5, arm32v7, arm64v8, i386, ppc64le, s390x, and win-
dows-amd64.

Working Software
Docker provides working software in that the software is ready to be
run without further configuration. The simple command docker run
<image> runs the software packaged in a Docker image and all the
dependencies packaged with it.

For example, if a software depends on a specific version of Java, the
Java version is also downloaded and installed with the other software
that is downloaded and installed. Running software from a Docker
image is illustrated in figure 3.

Accommodating Changing Requirements
A Docker image is built from a Dockerfile, which consists of Docker
syntax instructions. A Dockerfile gets built into a Docker image with
the docker build command, and the image is tagged to distinguish
the different builds generated from the same Dockerfile.

If some requirement changes, the Dockerfile could be modified
accordingly to generate a new image with a new tag. Consequently,
multiple versions of software could be made available using differ-
ent tags.

The default tag is “latest,” and a subsequent Docker image built
using a tag that already exists overwrites an earlier image with the
same tag. Tagged Docker images for three different versions (v1, v2,
and v3) of a Dockerfile are illustrated in figure 4.

Iterative, Test-Driven Development
Because Docker distributes ready-to-install software as pre-pack-
aged Docker images, it supports iterative, test-driven development.

The source code could be hosted on an online repository such as
GitHub. A single command docker build creates a Docker image
from the source code Dockerfile. The Docker image could be tested
in a test environment before deploying in production. A single com-

Figure 3

Figure 4

http://techwell.com

3
Why Choose
Containerization?

5
Virtualization or
Containerization?
Choosing the Right
Strategy

6
Deploying, Running
Applications in Docker
Containers

7
How Docker Enables Agile
Software Development

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Exploring Containers:
Creating a Dockerfile

14
How Testers Can Use
Docker to Shift Left and
Automate Deployments

15
Additional Resources

9C O P Y R I G H T 2 0 2 0

I N T R O D U C T I O N T O C O N T A I N E R S eGuide

mand docker run deploys the Docker image as running software.
The process is illustrated below in figure 5.

Most Docker container orchestration platforms support rolling up-
grades so that software can be updated and deployed iteratively.

Automation
Docker lends itself to automation very well. Each of the build, test,
and deploy processes could be automated with pipeline-based auto-
mation tools such as Jenkins.

Continuous Integration and Continuous Testing
In the context of Docker, continuous integration refers to integrat-
ing source code that is checked into a source code control system
(like GitHub) into a Docker image continuously with each successive
check-in.

Build automation tools like Jenkins could be used to develop a build
pipeline that builds source code on GitHub into a new Docker image
each time code is committed to GitHub. The Docker image also could
be tested continuously using automated tests in the build pipeline.

After testing a Docker image, it could be uploaded to a Docker image
repository, such as Docker Hub, using the docker push command,
and this process can also be automated in the build pipeline.

As a result, the source code for software could be integrated contin-
uously into a usable form of a Docker image. The Jenkins pipeline for
a continuous integration process is illustrated in figure 6.

Continuous Delivery
Continuous delivery is the next phase in the software development
process. Continuous delivery is defined as making usable software
available for deployment without actually deploying the software
into production.

Figure 5

Figure 6

Docker lends itself to automation very well.
Each of the build, test, and deploy processes
could be automated with pipeline-based
automation tools such as Jenkins.

http://techwell.com

3
Why Choose
Containerization?

5
Virtualization or
Containerization?
Choosing the Right
Strategy

6
Deploying, Running
Applications in Docker
Containers

7
How Docker Enables Agile
Software Development

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Exploring Containers:
Creating a Dockerfile

14
How Testers Can Use
Docker to Shift Left and
Automate Deployments

15
Additional Resources

10C O P Y R I G H T 2 0 2 0

I N T R O D U C T I O N T O C O N T A I N E R S eGuide

Continuous delivery may include deploying software into some stag-
ing environment after passing CI and running a suite of tests against
the software in that environment. A user or administrator has to ap-
prove the software for deployment into production. A build pipeline
again could be used for continuous delivery, as illustrated in figure 7.

Converting a Docker image into production-quality software could
involve further testing to sure an image is usable. Some services also
require the microservices they depend on to be available in some
way to make the service useful.

Continuous Deployment
Continuous deployment fully automates software development,
testing, and running an application. The usable software is deployed
continuously to production without user intervention by using rolling
upgrades, as illustrated in figure 8. A build pipeline could be used for
continuous deployment as well.

Collaboration with Software Users
By automating the Docker build, test, deliver, and deployment
processes, it becomes easier to collaborate with your software’s
end-users.

Figure 7

http://techwell.com

3
Why Choose
Containerization?

5
Virtualization or
Containerization?
Choosing the Right
Strategy

6
Deploying, Running
Applications in Docker
Containers

7
How Docker Enables Agile
Software Development

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Exploring Containers:
Creating a Dockerfile

14
How Testers Can Use
Docker to Shift Left and
Automate Deployments

15
Additional Resources

11C O P Y R I G H T 2 0 2 0

I N T R O D U C T I O N T O C O N T A I N E R S eGuide

End-user production deployments of artifacts that have passed
through a continuous delivery cycle are valuable. This gives the de-
velopment team immediate feedback on the software while waiting
for the users to be ready to accept a new release on their terms.
Because Docker images are tagged, different end-users could use
different versions of the same software customized to their needs.

A multi-branch Jenkins pipeline provides for further collaboration
with software end users. For example, some of the branches of the
pipeline could be allocated to the software end-user team while the
other branches are managed by the software development team.
The end-users may suggest changes more frequently than when

using a non-Docker application, as it is easier to update software
packaged, distributed, and deployed with Docker.

A Tool for Agile Work
Docker facilitates modular design for working software, sustainable
resource consumption, efficient software delivery, continuous inte-
gration, continuous delivery, continuous deployment, and collabo-
ration with end-users, all of which are founding principles of agile
software development. In this way, using Docker as your container-
ization platform can actually help make your software development,
testing, delivery, and deployment more agile.

Figure 8

http://techwell.com

3
Why Choose
Containerization?

5
Virtualization or
Containerization?
Choosing the Right
Strategy

6
Deploying, Running
Applications in Docker
Containers

7
How Docker Enables Agile
Software Development

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Exploring Containers:
Creating a Dockerfile

14
How Testers Can Use
Docker to Shift Left and
Automate Deployments

15
Additional Resources

12C O P Y R I G H T 2 0 2 0

I N T R O D U C T I O N T O C O N T A I N E R S eGuide

The idea of working as a test specialist on a team using DevOps can
feel intimidating. There are at least two technology stacks, container-
ization and continuous integration, that you need to be familiar with.
Add a source code repository like Git, a few test frameworks, and a
scripting language to bundle everything together, and you start to
approach a useful skill set.

My experience has been that very few people need to be able to
start from scratch. Here is what a normal day of testing in DevOps
looks like for me.

My current team follows pairing and Extreme Programming prac-
tices. For every code change, there are two developers and one test
specialist. Most of the time, we start a change request by building
a new test. This might be in RSpec or through Cucumber. Either a
developer or a test specialist will write the test, and then a developer
will write code to make that test pass. This helps us to understand
the code we are writing, to refactor with less worry, and to know
when we are done.

Throughout this red, green, refactor process, we are building new
environments locally. One of us will push a change, and I might pull
those changes and build a local environment.

The containers come in when we are closer to a usable version of the
change. Many of the DevOps stories I read involve using commands
I can never remember in workflows that feel archaic. I am able to do
everything through our continuous integration system.

First I use a drop list to select the branch I want to use to build a new
container. Building the container takes about five minutes. After my
container is built, I select which environment to deploy to. After a
few more minutes, I have a production-like environment available
to explore and perform test ideas that are more complex than the
programmatic testing we do during the development flow.

Pairing and having a test specialist removes most of the easy-to-find
bugs that normal development leaves for the testing role. Generally
I will still find problems related to the unpredictable way customers
can use the product. I demo these bugs, then we make a decision as
a group about whether they matter. Deciding to make a fix puts us
back in the red, green, refactor cycle.

Over the course of a feature change, I might make one container, or
I might make several. But it is very easy, taking somewhere around
seven minutes each time I need to create a new environment from
scratch. Once we feel like we are in a deliverable state, we create
one last container environment in a branch merged with the head
branch and demo to our product owner. That demo includes a dis-
cussion of any lingering things we decided not to fix so we can get
some fresh perspective on them.

Testing in DevOps can feel scary, but like most things, once you get
in a day-to-day groove, it becomes an indispensable part of your
workflow.

Demystifying DevOps: A Day in the
Life of a DevOps Tester
By Justin Rohrman

http://techwell.com

3
Why Choose
Containerization?

5
Virtualization or
Containerization?
Choosing the Right
Strategy

6
Deploying, Running
Applications in Docker
Containers

7
How Docker Enables Agile
Software Development

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Exploring Containers:
Creating a Dockerfile

14
How Testers Can Use
Docker to Shift Left and
Automate Deployments

15
Additional Resources

13C O P Y R I G H T 2 0 2 0

I N T R O D U C T I O N T O C O N T A I N E R S eGuide

Docker is the most popular containerization platform. A Docker con-
tainer runs software isolated from all other containers on a Docker
engine, and each has its own filesystem and networking. Docker
images encapsulate all the software, including dependencies that
are needed to launch a Docker container.

A Docker image is a set of layers that interact with each other. Each
layer encapsulates a single command or instruction in a Dockerfile,
which needs to be implemented to build a Docker image. The layers
are stacked and share the files and directories from underlying layers.

Each of an image’s layers is read-only. When a container is created
from an image, a layer is added on top that is writable. Multiple con-
tainers may be run using the same image, and each new container
shares the image’s layers.

Let’s look at what goes into creating a Dockerfile, which could be
used to build a runnable Docker image.

Creating an image
The first command or instruction in a Dockerfile specifies which
image is used as the base image, using the FROM command. When
an image is built from another image, it doesn’t create all the layers
from the base image again; it shares the layers with the base image.

An image doesn’t have to be built from another. It may be built by
specifying the FROM scratch command. This gives a mostly empty
container as a base state for creating new images.

Copying files and directories
The COPY command is used to copy files and directories to a desti-

nation directory in the container created from an image. The ADD
command is similar, with the additional feature to copy from a
remote file URL.

Running an image
When an image is run, a container is created. The CMD instruction
specifies what command to run within a new container.

The CMD instruction has a shell form and an exec form. The exec
form includes the executable or application to run, along with the
parameters for the application. For service-based images, such as
an image to run an Apache2 httpd service, the exec form should be
used. The shell form is for all other uses.

The ENTRYPOINT instruction also configures the command to run in
a new container and also has exec and shell forms. The difference
is that ENTRYPOINT must specify an executable, while CMD could
specify some parameters supplied to the ENTRYPOINT.

The RUN instruction is also used to run a command or an executable
and also has exec and shell forms. It is often confused as an alterna-
tive to CMD and ENTRYPOINT, but RUN is not run in a new container.
It’s used to build the Docker image and commit the result, implying
that the result is saved in the image as a layer.

Setting the working directory
The working directory may be set with the WORKDIR instruction.
It may be a relative path or an absolute path. Multiple WORKDIR
instructions may be specified in a single Dockerfile, and if a relative
path is provided, it is relative to the directory path of the preceding
WORKDIR instruction.

Exploring Containers: Creating a
Dockerfile By Deepak Vohra

http://techwell.com

3
Why Choose
Containerization?

5
Virtualization or
Containerization?
Choosing the Right
Strategy

6
Deploying, Running
Applications in Docker
Containers

7
How Docker Enables Agile
Software Development

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Exploring Containers:
Creating a Dockerfile

14
How Testers Can Use
Docker to Shift Left and
Automate Deployments

15
Additional Resources

14C O P Y R I G H T 2 0 2 0

I N T R O D U C T I O N T O C O N T A I N E R S eGuide

Docker is an increasingly popular lightweight virtualization system.
It has several advantages over virtual machines, such as having a
declarative description of the file system, and it’s easier to deal with,
starts up faster, and requires fewer resources in general.

In particular, the layered file system lets you deliver new updates to
data centers and get updates from developers faster, and being light-
weight means it is much easier and more efficient to run locally. There
are images as small as 2 Mb—you’ll never find a VM image that small.

It’s also easier for developers and ops to create lightweight OS
images with software already set up, and they can be run exactly the
same way on both the developer’s machine and the test and produc-
tion environments.

There are multiple ways Docker can be used. I’ll dig deeper into how
it can help with testing in continuous delivery and integration (CD
and CI) in certain cases.

The increasingly popular way of setting up a development process is
a pull request-based workflow popularized by GitHub:

1. A developer writes code and creates a pull request, adding their
code to the main code

2. Other developers can now review the code, and it can also be
deployed

3. Once review and testing is complete, code is merged to the main
code

The new code can be directly deployed to the production environ-
ment (full CD) or to a test environment (CI).

When Docker is added to this workflow, a deployable Docker image
is created during step one, which is the same image that eventually
will go to production. It also usually can be pulled to a developer’s
machine for debugging, to avoid the “But it works on my machine”
issue. In this workflow, not only can all end-to-end tests be run on
the pull request code under test, but they also can be deployed and
tested by QA.

Docker Compose is a way to join several images to work in tandem,
such as a web server and database in one compose. Using Docker
and Docker Compose, it is possible to deploy the pull request’s code
on a completely fresh environment with a fresh database, eliminat-
ing issues with contaminated data.

The alternative, more complex way to do the same thing would be by
using Kubernetes, which is designed to deploy sets of images (simi-
lar to Compose) to production or test environments.

The ability for developers to use exactly the same environment that
will be used in production helps to not only eliminate and debug
environment issues, but also simplify and streamline delivery of the
code to both test environment and production. The same image can
be used on a developer machine as on a test environment and, once
tested, can be delivered to production.

This also enables deploying those environments on demand and
working with each image (potentially related to a code branch) sep-
arately, isolating any issues. This constitutes an effective shift left,
which allows QA and developers to work much more effectively.

How Testers Can Use Docker to Shift Left
and Automate Deployments
By Artem Golubev

http://techwell.com

3
Why Choose
Containerization?

5
Virtualization or
Containerization?
Choosing the Right
Strategy

6
Deploying, Running
Applications in Docker
Containers

7
How Docker Enables Agile
Software Development

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Exploring Containers:
Creating a Dockerfile

14
How Testers Can Use
Docker to Shift Left and
Automate Deployments

15
Additional Resources

15C O P Y R I G H T 2 0 2 0

I N T R O D U C T I O N T O C O N T A I N E R S eGuide

Additional Resources
M O R E I N F O R M A T I O N F O R S O F T W A R E P R O F E S S I O N A L S

N A R R O W Y O U R S E A R C H T O A S P E C I F I C T Y P E O F R E S O U R C E :

Our partner, Coveros, has significant DevOps experience (including containerization) and can help organizations implement
DevOps with security in mind or integrate security capabilities into existing DevOps processes. Coveros offers more than a
dozen courses on DevSecOps, DevOps, and security—all of which include best practices taught by industry leaders. Whether
you’re looking to get hands-on experience for yourself, your team, or your organization, Coveros has a learning solution for you.

DevOps & DevSecOps Courses | Software Security Courses | Agile & DevOps Transformations | DevOps Engineering | DevSecOps

AgileConnection Community
AgileConnection brings you the latest in
agile and DevOps principles, practices, and
technologies. Check out articles and interviews
from experienced software professionals and
thought leaders, and join the community to
gain access to member-exclusive content such
as conference presentations, weekly newsletter
updates, Q&A discussions, and more.

DevOps Articles
AgileConnection is home to thousands of
DevOps software resources, including articles,
archived Better Software magazine articles,
conference presentations, and interviews with
industry notables. Check out the latest agile
and DevOps articles and read about how to
speed delivery, reduce risk, and build security
in from the start.

TechWell Conference Presentations
Couldn’t make it to a TechWell conference
to sharpen your agile and DevOps skills
and knowledge? TechWell conference
presentations are available to AgileConnection
members soon after conferences end. Click
here to join AgileConnection and access
conference presentations related to security
and DevSecOps.

Interviews
Each year, TechWell interviews dozens of
software professionals, including well-known
thought leaders, seasoned practitioners, and
respected conference speakers. Click here
to read, listen to, and watch interviews with
DevOps, agile, and other experts.

Agile + DevOps Virtual
In light of recent events, TechWell has morphed
the popular Agile + DevOps East conference
into a fully virtual experience this year! From
the comfort of your own digital device, you will
have access to all of the same great content
and experts you have come to expect from an
Agile + DevOps East conference.

DevSecOps Summit at Agile +
DevOps Virtual
The DevSecOps Summit is a fully-virtual,
multi-day series of first-person talks, giving an
ideal perspective on how you and your team
can enable faster application development
with more rapid deployment to production
while integrating security into your DevOps
initiatives. Explore the program here.

Accelerate
Delivery

The TechWell Hub is a great resource to get your questions answered,
help others with problems they’re stuck on, and engage with experts in
software. Follow channels like #DevOps, #DevSecOps, and more.

J O I N
H E R E

http://techwell.com
https://training.coveros.com/training-topics/devops-training-courses
https://training.coveros.com/training-topics/software-security-training-courses
https://www.coveros.com/services/agile-devops-transformation/
https://www.coveros.com/services/devops
https://www.coveros.com/services/devsecops
https://www.agileconnection.com/agileconnection-member-benefits
https://www.agileconnection.com/topics/devops
https://www.agileconnection.com/resources/presentations
https://www.agileconnection.com/resources/presentations
https://www.agileconnection.com/resources/presentations
https://www.agileconnection.com/resources/interviews
https://www.agileconnection.com/resources/interviews
https://agiledevopseast.techwell.com/
https://agiledevopseast.techwell.com/program/schedule
https://agiledevopseast.techwell.com/program/schedule
https://agiledevopseast.techwell.com/program/schedule
https://www.coveros.com/?utm_source=wp&utm_medium=digital-pub&utm_campaign=mk-devsecops-eguide-july19-coveros-logo
https://well.tc/5ott

