10/10/18

Frontena i esling.
Stepping in and
Collaborating with
Developers

Gil Tayar (@giltayar)
October 2018

This presentation: http://bit.ly/collaborating-with-developers
Github repo: https://github.com/qiltayar/collaborating-with-developers

Applitools

10/10/18

What I'm Going to Talk About

@giltayar

10/10/18

Stepping in and
Collaborating with
Developers

TELL ME HOW!

Why?

applitools

10/10/18

@giltayar

Agile Manifesto

Individuals and interactions
Working software

Customer collaboration
Responding to change

e http://agilemanifesto.org/
@giltayar

10/10/18

The “Just Wing It” Approach

Individuals and interactions over
Working software

Customer collaboration
Responding to change

e http://agilemanifesto.org/
@giltayar

(rrr 1

The “Just Wing It” Approach
(Agility)

e Individuals and interactions

over processes and tools

Working software over
comprehensive

documentation

Customer collaboration over

contract negotiation

Responding to change over

following a plan

10/10/18

The “Just Wing It” Approach

Individuals and interactions over
Working software

Customer collaboration
Responding to change

e http://agilemanifesto.org/

@giltayar

Working software

@giltayar

10/10/18

Trunk-based Development

— Realize the truth
Trunk-based A
Development \ (/-

There IS no'release

10/10/18

How do we test in such an
environment?

@giltayar

No more nightlies

e Tests cannot run “overnight”
e Tests cannot take hours, or even tens of minutes.
e At most a few minutes. 1-3.

@giltayar

10/10/18

Developers MUST Test

@giltayar

The QA Gateway Must Die

@giltayar

10/10/18

Tests must be part of the
development cycle

@giltayar

Tests must be fast

e Developers can’t wait
e They want to know now that the code runs
e They have to commit now

@giltayar

10

10/10/18

This is the “Waterfall” Method

Implement

@giltayar

This is better, but not good enough

I

I
1
1

Design Implement

@giltayar

11

10/10/18

This is true “agile”

Implement
&
Test

@giltayar

This is the Essence of “Shift Left”

@giltayar

12

10/10/18

Yay!
Shift Left!
Yay!

Except that...

@giltayar

13

10/10/18

Developers Don't
Test

Why Don’t
Developers Test?

14

10/10/18

Backend and Frontend Developers

@giltayar

Backend
Developers
Test More!

15

10/10/18

It's a young discipline
More difficult

Frontend Testing is Young

The whole modern Frontend Stack didn’t exist 5 years ago
o The previous stack was impossible to test

The current stack is testable
o It took time to solidify

But it has solidified now.
There is a methodology that is used for frontend testing

@giltayar

16

10/10/18

But Why Frontend Developers?

@giltayar

But Why Frontend Developers?

Closest to the product
Less tested

We need to help them
Best bang for the buck

o Same tools as E2E

@giltayar

17

10/10/18

@giltayar

Which brings us to the second part...

@giltayar

18

10/10/18

How?

applitools

@giltayar

How do we do frontend testing?

19

10/10/18

Let's start with the language

@giltayar

JavaScript isn’t serious

“JavaScript is a toy language”
“JavaScript shouldn’t be taken seriously”
“It's nice for small programs”

“0.2 + 0.1 == 0.30000000000000004"

This was true 5 to 10 years ago. Not true now

(and the last one is true in most languages)

@giltayar

20

10/10/18

| have two quotes for you...

@giltayar

Brendan Eich

@giltayar

Always bet on |S

First they said JS couldn’t be useful
for building “rich Internet apps”

Then they said it couldn’t be fast
Then they said it couldn’t be fixed
Then it couldn’t do multicore/GPU
Wrong every time!

My advice: always bet on S

21

10/10/18

Atwood’s Law

If it can be written in JavaScript, it will be written in JavaScript

@giltayar

Code Written in JavaScript

Gmail

Google Maps

Twitter Ul

Facebook

Large parts of server-side Netflix

My favorite example:

a CPU+hardware emulator that boots Linux

@giltayar

22

10/10/18

The JavaScript Renaissance

JavaScript today is...

Modern

Powerful

Concise

Functional

Readable

Ubiquitous (browser, server, CLI, 10T)

Has the richest and largest 3rd party library in the world
...and is continually evolving

@giltayar

Next Thing: Testing Methodology

@giltayar

23

10/10/18

The Testing Pyramid

Unit Tests

24

10/10/18

Unit tests...

Are fast (milliseconds)

Are not flaky

Do no I/O or use browser features

Test only one module, function, or class
Bring little confidence on their own

Are perfect for Business Logic testing

@giltayar

Integration Tests

@giltayar

25

10/10/18

Integration tests...

Are still fast (10-100s milliseconds)
Are mostly not flaky
Do I/O and use browser features

Test a group of modules/classes/functions as they are tested in
the final product

Bring some level of confidence in the application
Are perfect for testing whole parts of the application easily

@giltayar

E2E Tests

@giltayar

26

E2E tests...

Are slow (seconds)

Are flakier

Browser Automation tests
Test features end to end
Bring lots of confidence

@giltayar

The Testing Pyramid

(@)
o
=)
=h
Q
)
>
Q
)

@giltayar

10/10/18

27

10/10/18

80UBPIUOD

@giltayar

Answer: Development Cycle

What is acceptable for nightly automation test, is not acceptable for
developers

@giltayar

28

10/10/18

Answer: Development Cycle

Hence the emphasis on unit and integration tests

@giltayar

OK, OK, Shift Left, yeah.
But...

@giltayar

29

What'’s the Tester’s Role?

e Educate and monitor
o They are lazy bums, after all. @

Work on the tests with the frontend developers
Write the real E2E tests

And... Shift Right. E2E tests in production!
o Which you can (and should) still do with JS

@giltayar

10/10/18

OK, OK. But
how?

How do | write
tests?

Show me some
code!

30

10/10/18

Writing Unit Tests

applitools

Remember....

Unit tests test only one module, function, or class
Bring little confidence on their own
Are perfect for Business Logic testing

Are very fast (milliseconds)

@giltayar

31

10/10/18

The Function to Test

function factorial (n) {

let result = 1
for (let 1 = 1; 1 <=

result *= i

return result

}

module.exports = factorial

@giltayar

Whoever uses the function needs to...

const factorial = require('./factorial.js')

. factorial(...)

@giltayar

32

Does the browser support ‘'module.exports ? No!

function factorial (n) {

let result = 1

for (let 1 = 1; 1 <=

result *= i

return result

}

‘ module.exports = factorial

@giltayar

Modular Modern JS coeno

<script
Production
Code

src=bundle.js>
Il I N N Webpack

@giltayar

10/10/18

33

What do we want to test?

factorial(0) == 1
factorial(1) == 1
factorial(2) == 2
factorial(5) == 120

@giltayar

Test Factorial

const assert = require('assert')

const factorial = require('../../lib/factorial')

assert.strict.equal (factorial (0),
assert.strict.equal (factorial (1),
assert.strict.equal (factorial (2),

assert.strict.equal (factorial (5),

@giltayar

1)
1)
2)
120)

10/10/18

34

10/10/18

Where can this code run?

The Browser™

* With the help of webpack

Where can it also run?

NodedS

35

10/10/18

Most frontend code today can also
run under NodedS

@giltayar

Universal/lsomorphic Code

@giltayar

36

10/10/18

Let’s run it under NodeJS

» collaborating-with-developers git:(master) x node test/unit/test-factorial-kinda.js
test passes
> collaborating-with-developers git:(master) x JJ

@giltayar

Awkward to Test Like This

We need a Test Runner
Just like jUnit, NUnit, pytest, test-unit, ... in other languages
NodedS has lots of them:
o Mocha, Jest, Ava, Tape, Jasmine.
o And the list goes on...
The most popular are Mocha and Jest
We'll be demoing using Mocha

@giltayar

37

10/10/18

Mocha Test

const { describe, it } =
require ('mocha') describe ('factorial', () => {
const { expect } = it ('should handle 0', () => {
require ('chai') expect (factorial (0)) .to.equal (1)
})
const factorial = it ('should handle 1', () => {
require('../../lib/factorial™") expect (factorial (1)) .to.equal (1)
})
it ('should handle 5', () => {

expect (factorial (5)) .to.equal (120)

@giltayar

Let’s run it under Mocha

-+ collaborating-with-developers git:(master) x npx mocha test/unit/test-factorial.js

factorial
v should handle
v should handle
v should handle
v should handle

4 passing (9ms)

- collaborating-with-developers git:(master) x

@giltayar

38

Testable Code

e Separation of Concerns: code does one thing and one thing
only

e Separate Ul code, I/O code, and logic

e Test logic with unit tests, and the others with integration tests

@giltayar

Untestable Code

function writeFactorialToServer (n, filename) {

let result =1

for (let 1 = 1; 1 <=

result *= i

// write result to server

fetch('http://...', {method: 'PUT', body: result.toString()})

module.exports = writeFactorial

@giltayar

10/10/18

39

Notice how important speed is...

10/10/18

» collaborating-with-developers git:(master) x npx mocha test/unit/test-factorial.js

factorial
v should handle
v should handle
v should handle
v should handle

4 passing (9ms)

-» collaborating-with-developers git:(master) x

@giltayar

Writing Integration
Tests

applitools

40

10/10/18

Remember...

Test a group of modules/classes/functions as they are glued in
the final product

Do I/O and use browser features

Are still fast (10-100s milliseconds)

Are mostly not flaky

@giltayar

Must Run in the Browser?

Test a group of modules/classes/functions as they are glued in

the final product
Are still fast (10-100s milliseconds)
Are mostly not flaky

@giltayar

41

10/10/18

No! It Can Run Under NodedJS

But unfortunately, out of scope

42

10/10/18

For more information...

https://www.youtube.com/watch?v=H 2cMSuNdS8

@giltayar

Just a taste...

describe ('calculator app component', function () {
before (function () {
global.window =
new JSDOM (
‘<html><body><div id="container"/></div></body></html>") .window
global.document = window.document

H)

@giltayar

43

10/10/18

Just a taste [2]...

it ('should work', function () {

ReactDom.render (<CalculatorApp />, document.getElementById('container'))

const digit4Element = document.querySelector ('.digit-4")
const operatorMultiply = document.querySelector ('.operator-multiply")

const operatorEquals = document.querySelector ('.operator-equals')

digit4Element.click ()
operatorMultiply.click()
digit4Element.click ()

operatorEquals.click()

expect (displayElement.textContent) .to.equal ('16")
})

@giltayar

Using JSDOM for Integration Tests...

Run in milliseconds

No need to run a server

No need to run a browser

Not flaky

Debug with any NodeJS debugger

No sourcemaps

No build step - just change code and rerun
Mock XHR using nock - no mock HTTP server

@giltayar

44

Let's try it!

10/10/18

» collaborating-with-developers git:(master) x npx mocha -r babel-register test/integration/test-calculator-app.js

calculator app component
v should work

1 passing (191ms)

» collaborating-with-developers git:(master) x |J

@giltayar

Writing E2E Tests
(Browser Automation)

applitools

45

10/10/18

We need a browser automation
framework...

@giltayar

We have lots of them...

Selenium WebDriver
TestCafe
WebDriverlO
NightWatch
CasperJS

Cypress

Puppeteer

@giltayar

46

10/10/18

But we’ll use...

e Selenium WebDriver

@giltayar

Serving the Frontend Code

before ((done) => {
const app = express|()
app.use('/', express.static(dirname + '/../../dist'))
server = app.listen (8080, done)
})
after (() => {
server.close()

b

@giltayar

47

10/10/18

Initializing WebDriver

before (async () => {
driver = new webdriver.Builder ()
.forBrowser ('chrome')
.build()
)

after (async () => await driver.quit())

@giltayar

The Test

it ('should work', async function () {

await driver.get ('http://localhost:8080")

digit4Element = await driver.findElement (By.css('.digit-4"))
operatorMultiply = await driver.findElement (By.css('.operator-multiply'))

operatorEquals = await driver.findElement (By.css('.operator-equals'))

digit4Element.click ()
operatorMultiply.click()
digit4Element.click ()

operatorEquals.click()

driver.wait (until.elementTextIs (await driver.findElement (By.css('.display')),

@giltayar

48

Summary

Agile is here: “There is no release, code is always working”
Old “QA Gateway method” cannot work anymore

Shift-left to testing during development

Work with developers for this. Mostly frontend developers

Understand the language of the frontend developers

The test pyramid

The advantages and disadvantages of each test type in terms of speed, flakiness, and
confidence

JavaScript and modern JavaScript Development

The different test runners, browser automation frameworks, etc...

It's a whole new world!

@giltayar

Resources

e Intro to frontend testing:
https://hackernoon.com/testing-your-frontend-code-part-v-visual-
testing-935864cfb5c7
Frontend integration testing:
https://www.youtube.com/watch?v=H 2cMSuNdS8
Assert(JS) Talks:

https://www.youtube.com/playlist?
list=PLZ66¢c9 z3umNSrKSb5cmpxdXZcIPNvKGw
e People to follow:
Kent C. Dodds
Kevin Lamping

Me... ®

@giltayar

10/10/18

49

10/10/18

Questions?

[X X]
This presentation: http://bit.ly/collaborating-with-developers

Github repo: https://github.com/qiltayar/collaborating-with-developers

@giltayar

50

