
	
	

T7
DevOps/Continuous Delivery
Thursday, May 3rd, 2018
11:15 AM

Testing in a Microservices and
Continuous Delivery Environment

Presented by:

Robert Williams

CA Technologies

Brought to you by:

350 Corporate Way, Suite 400, Orange Park, FL 32073
888-- -268- - -8770 ·· 904- --278-- -0524 - info@techwell.com - http://www.stareast.techwell.com/

	
	

Robert Williams
CA Technologies

Robert Williams has been in the software development business for twenty
years, in fields ranging from semiconductor manufacturing automation and
reporting systems to mobile security solutions to the market's leading service
virtualization product. He has experience building, testing, and deploying
software in multiple scenarios, whether it's an infrequently deployed internal
system, a commercial product installed by customers on-premise, or multi-tenant
hosted solutions. Robert has been a developer, manager, ScrumMaster, architect,
and agile trainer/coach, but for the past decade he’s been keenly interested in
tools and techniques that improve organizations’ ability to smoothly turn ideas
into functioning, deployed software.

	

1

Testing in a Microservices
and Continuous Delivery
Environment
Robert Williams

Continuous
Delivery

2

Continuous delivery is the ability to get
changes of all types—including new
features, configuration changes, bug
fixes and experiments—into production,
or into the hands of users, safely and
quickly in a sustainable way.

3

CD has “crossed

the chasm” and is

widely adopted -

but not yet for all

projects

4

Adopting

74%

Not

Adopting

16%

Unsure

6%

Other

4%

CD ADOPTION, 2016The New Normal

3

Motivations
FASTER FEEDBACK

FASTER VALUE

LOWER RISK

HAPPIER TEAMS

HIGHER QUALITY

1

2

3

4

5

5

IT Performance
2017
Low IT Performers
• Release frequency: 1 week - 1 month
• Lead time for changes: 1 week - 1 month
• Change failure rate: 40%

High IT Performers
• Release frequency: Multiple times per day
• Lead time for changes: Less than 1 hour
• Change failure rate: Less than 15%

6

2016
Low IT Performers
• Release frequency: 1 - 6 months
• Lead time for changes: 1 - 6 months
• Change failure rate: 22%

High IT Performers
• Release frequency: Multiple times per day
• Lead time for changes: Less than 1 hour
• Change failure rate: Less than 15%

4

Microservices

Microservice-based architecture is an
architectural style that structures an
application as a collection of loosely
coupled services, which implement
business capabilities

8

5

9

API
Gateway

User DB

Inventory
DB

Shipping
DB

WebApp

User Service

Inventory Service

Shipping Service

ENABLES CONTINUOUS DELIVERY

SUPPORTS DEVOPS

CAN EVOLVE TECH STACK

EASIER TO UNDERSTAND, MODIFY, TEST SMALLER SERVICES

1

2

3

4

10

But...

Motivations

OVERALL COMPLEXITY REMAINS, BUT IS HIDDEN IN INTEGRATIONS1

6

How it Fails

12

7

13

API
Gateway

User

Inventory

Shipping

Billing

Reward Payment Gateway

Inter-Service Dependencies

14

API
Gateway

User

Inventory

Shipping Billing Reward Payment Gateway

Hidden Coupling

8

Continuous
Testing

Testing your system at the appropriate
level, measuring appropriate
characteristics, in the appropriate
context, at every step in the SDLC

16

9

17

Level Characteristics Context

Unit / API Does the service behave as
designed? API compatibility?

All dependencies
virtualized

Integration Basic functionality, selected
negative cases, API
interoperability

Transitive, expensive,
unstable, or unavailable
dependencies virtualized

Functional Overall system behavior Only unstable /
unavailable dependencies
virtualized

Performance Performance characteristics –
speed, memory, disk,
network, latency, degradation

Expensive, unstable /
unavailable, or artificially
slow dependencies
virtualized

But...

18

10

But...

19

Options

11

Throw in the Towel?

21

Top performing IT
organizations can deploy
software to production in
less than one hour, have
failure rates of less than
15%, and can easily roll
back their changes.

Throw in the Towel?

22

• Ensure good automated unit test coverage
• GUI testing
• Extensive API testing
• Resiliency, Scalability
• Usability / Functional Quality
• Automate, automate, automate
• Teach developers how to test
• Automated failure detection and correction

12

Testing In Production

23

Canary Deployments

24

WebApp

User Service v1.1

Inventory Service

Shipping Service

User Service v1.0
90%

10%

13

Synthetic Data

25

WebApp

User Service v1.1

Inventory Service

Shipping Service

User Service v1.0

Blue / Green

26

Production Standby Staging

14

Modified Integration Testing

27

B
ill

in
g

Payment Gateway

Shipping

U
se

r
In

ve
nt

or
y

N

N+1

N-1

N

N+1

N-1

N

N+1

N-1

N N+1N-1

Modified Integration Testing

28

20 microservices
3 versions each

320 = 3.5x109 combinations

320 combinations 1000 combinations / sec 86400 sec/day

to exhaustively test all combinations40 days

15

Modified Integration Testing

29

Service Mesh Distributed Tracing

Other Tools and
Techniques

16

Service Virtualization

31

§ Can’t always run multiple
versions of a service
simultaneously (e.g.
database changes)

§ Can’t generate all
negative test cases using
live code

§ Therefore... Create a
virtual service for each
version of your real
service. Keep this in the
same repo as your binary,
and tag it the same way
as your binary.

Extended Semantic Versioning

§2.3.1

32

§ Breaking
change

§ Add
backwards-
compatible

feature

§ Backwards-
compatible
bug fix

§ Public API

17

Extended Semantic Versioning

§2.3.1

33

§ Breaking
change

§ Add
backwards-
compatible

feature

§ Backwards-
compatible
bug fix

§ Internal API

§ Or fix a bug that was
impacting another service

Extended Semantic Versioning

34

§ ”Bill of Materials” Service Major Minor Patch
User 2 0 14
Inventory 4 3 6
Billing 1 0 12
Shipping 1 1 0
Rewards 1 6 0

§ Baseline as max
version of any
dependent service § 4.3.6

18

Extended Semantic Versioning

35

§ ”Bill of Materials” Service Major Minor Patch
User 2 0 14
Inventory 4 3 6
Billing 1 0 12
Shipping 1 2 0
Rewards 1 6 0

§ Increment
corresponding field
when any field of
dependent service
is incremented

§ 4.4.6

1

3

Extended Semantic Versioning

36

Service Major Minor Patch
User 2 0 14
Inventory 4 3 6
Billing 1 0 12
Shipping 1 2 0
Rewards 1 6 0

§ Tag binaries with all
three – public,
internal, BoM.

§ 4.4.6

1

3

§ public_2.3.1
§ billing_1.0.12
§ bom_4.4.6

19

Long Term
Strategy

Support the
Continuous
Delivery
Transformation

38

20

Automate
Everything

§ Testing at all levels

§ Release pipeline

§ Error detection and
reporting in production

§ Rollbacks and failovers

39

Become a Coach,
not a Goalie

§ Teach developers how to
test, rather than doing it
yourself.

§ Quality Assistance, not
Assurance

40

§ www.atlassian.com/inside-atlassian/qa

21

Sr. Principal Architect, Service Virtualization
Robert.Williams@ca.com

Robert Williams

