

ADM Market Insight:
Leveraging Shift-Left Testing
in Performance Engineering

DEFECT DETECTION_

DEFECT PREVENTION_

Introduction

As organizations adopt post-
pandemic business models, they
are also racing to play “catch up”
with ongoing digital transformation
initiatives. As a result, performance
engineering teams are expected
to release software faster, meet
enhanced performance requirements,
and deliver a superior customer
experience.

The widespread adoption of Agile
and DevOps methodologies has also
led to dramatic changes in software
development and testing. By
adopting shift-left testing practices,
developers and testers collaborate
earlier in the software development
lifecycle (SDLC) with a keen focus
on defect prevention versus defect
detection.

2

https://www.microfocus.com/en-us/portfolio/performance-engineering/overview
https://www.microfocus.com/en-us/portfolio/performance-engineering/overview

	 	 	 	 	 	 	 	 	

	 	

 The Case for
Shift-Left Testing
Traditionally, performance testing
has been the final step in the SDLC—
often completed during the User
Acceptance phase, or even later.
But waiting to identify bugs, defects,
and other issues often delayed
releases. In some cases, the
software would be scrapped
altogether due to the time and
cost involved in fixing defects.

By adopting shift-left testing,
software developers and testers
collaborate throughout the SDLC.
Testers understand the software
requirements, design, architecture,
and functionality from the very
beginning. Because testing is part of
the development process, all team
members work together to identify
and resolve issues faster and earlier,
reducing the time and cost involved. Why Shift-Left Testing in Performance Engineering?

Shift-left testing bridges the gap between development and testing teams—
allowing for seamless collaboration among teams, tools, and processes through
continuous feedback loops. In other words, QA and performance engineers
aren’t solely responsible for software quality and user experience. A shift-left
approach involves every team working together to:

+ Maintain high levels of performance that enhance the customer
experience, keeping up with the pace of business.

+ Manage end-to-end performance.

3

	 	 	

Six Shift-Left Testing Facts
Keep the following in mind while developing your strategy:

1.
Collaboration is essential.
Shift-left testing requires
involving team members
from diverse disciplines at
every stage of the SDLC. This
approach shifts focus from
defect detection to defect
prevention.

3.
A shift-left approach allows
testers to test the software
design first and through the
customer experience lens.

5.
It empowers testers to adopt
test-driven development
(TDD) and behavioural-driven
development. These practices
help prevent the induction of
defects into the software.

2.
Shift-left testing expands
testers’ roles in the SDLC.
They work proactively with
the team to plan and build
an effective testing strategy
that accounts for the long-
term vision of the product.

4.
Testing throughout the SDLC
empowers developers to take
more ownership of their code
and the final deliverable.

6.
Shift-left testing also works
well with the Agile Testing
Manifesto. This approach
supports Agile Scrum
teams, which include testers
and other stakeholders
in regular stand-up calls,
review meetings, and other
communication forums.
Scrums provide testers with
a detailed analysis of the
software and rapid feedback
to prevent defects from being
grounded into the software.

Benefits of Shift-Left Testing
Shifting left introduces testing earlier
in the software development process.
This practice results in more efficient,
comprehensive testing while also improving
software quality and customer satisfaction:

+ Improved solution design—Teams often have a sharper
focus on quality when testing starts earlier. Having additional
stakeholders responsible for QA can also lead to fresh
perspectives and potentially new design alternatives.

+ Earlier bug detection—In shift-left testing, potential glitches
and performance issues are identified sooner and can be
addressed more efficiently instead of as an afterthought
“once the critical stuff gets done.”

+ Time and resource savings—Shift-left testing empowers
teams to identify and address any defects early, reducing the
cost of fixing them.

+ Faster time to market—When teams detect bugs and other
performance issues earlier, they can fix them faster. Quickly
resolving these problems can accelerate time to market and
significantly reduce the time between releases.

4

https://www.growingagile.co.za/2015/04/the-testing-manifesto/

—

Shift-Left Testing and the Agile
Manifesto
Shift-left testing supports the Agile Testing Manifesto.
It encourages teams to focus on:
+ Testing throughout versus testing at the end.
+ Preventing bugs versus finding bugs.
+ Testing understanding versus checking functionality.
+ Building the best system versus breaking the system.
+ Extending responsibility for quality to the team

not just testers.

Time and Resource Savings
The cost to fix an error found after product release
was four to five times as much as one uncovered
during design, and up to 100 times more than one
identified in the maintenance phase.

+ The Systems Sciences Institute at IBM

5

Harmonize Your Shift-Left Goals
The more teams shift left, the more they can confidently
produce high-quality software at speed and at scale. The
challenge is that it has increasingly expanded testing
demands. With performance engineering, developers are
responsible for ensuring that applications are tested for
performance, eliminating the need for teams to go back and
refactor an entire application.

While shifting left requires cultural and organizational
change, using tools that automate or streamline shift-left
initiatives can facilitate adoption. To harmonize efforts,
you need to choose techniques and tools that fit existing
workflows, integrate with preferred tools, and automate as
much as possible.

+ UFT Developer: Easily create
tests for continuous testing and
integration.

+ LoadRunner solutions: Natively
run scripts and reuse assets in
all LoadRunner family solutions.
Developers can script, model
scenarios, run performance tests,
and quickly analyze the results
without leaving their familiar
development ecosystem.

+ PulseUno and Fortify: Inspect
code as changes are checked in,
the relevant security validations
occur, and vulnerabilities are
identified and fixed before release.

+ ALM Octane: Provide a central hub
that includes integrated backlog,
defect, and DevOps pipeline
management.

OpenText’s primary solutions have an
analogous developer-centric solution
that natively integrates with common
DEs and with their counterparts.
These solutions facilitate shift-left
testing without increasing workloads
accelerate adoption:

In addition, OpenText
performance engineering
solutions offer a proactive,
continuous testing discipline that
delivers four key advantages:

+ Balance and prioritize
responsibilities across developers,
testers, and performance
engineers.

+ Broaden integration of
performance into the CI/CD
process.

+ Monitor performance from build to
production.

+ Continuously analyze and
efficiently collaborate across
teams.

Learn how the LoadRunner family of
performance engineering solutions
can help your teams shift left to
deliver better software quality and an
optimal customer experience.

Learn More

6

https://www.microfocus.com/en-us/portfolio/performance-engineering/overview

243-000026-001 | O | 05/24 | © 2024 Open Text

Accessibility Report

		Filename:

		adm-market-insight-leveraging-shift-left-testing-in-performance-engineering-ebook.pdf

		Report created by:

		Sar Dugan

		Organization:

		

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 4

		Passed: 26

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Skipped		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Skipped		All form fields are tagged

		Field descriptions		Skipped		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top	Button 30:
	Button 23:
	Page 2:
	Page 5:
	Page 7:

	Button 24:
	Page 2:
	Page 5:

	Button 15:
	Page 3:
	Page 6:

	Button 16:
	Page 3:
	Page 6:

	Button 25:
	Page 4:

	Button 26:
	Page 4:

