
Principles of Continuous Testing: A Practitioner’s Guide

© Curiosity Software Ireland Ltd. 2018

Page 1 of 29

Principles of Continuous Testing

A Practitioner’s Guide

05-12-2018

http://curiositysoftware.ie/
https://www.linkedin.com/company/18309745/admin/
https://twitter.com/CuriositySoft

Principles of Continuous Testing: A Practitioner’s Guide

© Curiosity Software Ireland Ltd. 2018

Page 2 of 29

Principles of Continuous Testing
A Practitioner’s Guide

TABLE OF CONTENTS

Principles of Continuous Testing ... 4

New approach, same barriers?... 6

A question of method: mini-Waterfalls undermine continuity ... 6

People, process, technologies: practical barriers to Continuous Testing 7

“Shift left” with Model-Driven Development ...11

“Shift right” to automate and optimise TestDev ..14

Automated Test Case Design .. 15

“Just in Time” Test Data ... 17

On Demand Environments ... 19

Complete Test Automation .. 20

Robotic Process Automation manages the TestOps ...22

Accurate development and rigorous testing in-sprint ..26

Continuous Testing: an ongoing process ..27

Find out more ...28

End Notes ...28

http://curiositysoftware.ie/

Principles of Continuous Testing: A Practitioner’s Guide

© Curiosity Software Ireland Ltd. 2018

Page 3 of 29

Continuous Testing has become an ideal for organisations striving to build and deliver ever-

more complex systems, in ever-shorter iterations. This eBook considers the core principles of

Continuous Testing, and what it means in practice to fulfil them. It begins by considering what

Continuous Testing is in its essence, and common barriers to its adoption. An alternative

approach to designing, building, and testing systems is then set out, arguing that it both fulfils

the core principles of Continuous Testing, and can remove perennial barriers to its adoption.

http://curiositysoftware.ie/

Principles of Continuous Testing: A Practitioner’s Guide

© Curiosity Software Ireland Ltd. 2018

Page 4 of 29

Principles of Continuous
Testing
Rigorously testing fast-changing, fast-growing systems within ever-shorter iterations

demands that every moment is spent testing new functionality. Any time maintaining existing

assets will quickly become unsustainable, as the growing complexity of systems will soon

mean that there are more assets than can be updated in-sprint. Meanwhile, attempting to

formulate and execute new tests only after maintenance, at the end of a cycle, will only lead

to a mountain of technical debt, as testing rolls over constantly to the next iteration.

Quality Assurance must instead commence the moment design and development does, to

avoid large portions of the released system going untested and being left exposed to costly

defects. This leads us to a Shift Left approach, the first principle of Continuous Testing:

1. Shift Left, Shift Right. Testers must act as critical modellers, working from day one to

build quality into testable systems. This not only avoids the higher remediation costs

associated with detecting bugs late, but can enable a greater degree of subsequent

automation as QA moves “right” through the delivery cycle.

2. Parallelism. There must accordingly be an emphasis on parallelism, with test teams

working simultaneously with one another, as well as with developers and business

analysts. Only then can the procedural constraints and miscommunications associated

with a siloed approach be avoided.

3. “Don’t Repeat Yourself” (DRY).i There must further be an emphasis on re-usability, so

that the effort of previous iterations is seamlessly leveraged in future sprints. This is

required if QA is required to focus only on newly developed or updated functionality.

4. Complete automation. Continuous Testing further requires the removal of

bottlenecks associated with manual effort. This demands a near zero touch approach

to moving from system designs to an up-to-date set of test cases, environments,

automation logic, and data. QA then becomes an automated comparison of the

intended system, housed in accurate designs, to the developed system, housed in

http://curiositysoftware.ie/

Principles of Continuous Testing: A Practitioner’s Guide

© Curiosity Software Ireland Ltd. 2018

Page 5 of 29

code. This end-to-end test automation requires the automation of TestDev tasks like

test creation and execution, as well as the automation of TestOps tasks through

Robotic Process Automation.

5. Continuous Feedback. The complete automation of TestOps and TestDev task

requires information flowing seamlessly across the whole delivery lifecycle. This also

facilitates the Shift Left, Shift Right approach necessary to automate test

maintenance: introducing a traceability from QA assets back “left” to the design from

which they are derived means that test results can be fed directly into the design; at

the same time, any changes made to the design reverberate “right”, being mirrored

automatically in the test assets. A complete information flow between technologies

further maximises observability and the amount of both machine data and testing

metadata that can be learned from in QA. This maximises confidence in test results,

while enabling targeted and evidentially informed testing. Collecting as much testing

metadata as possible in QA will also be a prerequisite to any form of artificially

intelligent testing.

These five principles indicate broadly the nature of Continuous Testing. The challenge comes

in their implementation, especially as few QA teams can simply halt their cycles to rebuild

their processes, tools, and teams from the ground up; they instead must work iteratively to

improve the existing best practice, while continuing to test for upcoming releases. Some of

the barriers to Continuous Testing will now be considered, before setting out some practical

steps for fulfilling the five principles now defined.

http://curiositysoftware.ie/

Principles of Continuous Testing: A Practitioner’s Guide

© Curiosity Software Ireland Ltd. 2018

Page 6 of 29

New approach, same barriers?
It has now been nearly five decades since Winston W. Royce described the sequential,

Waterfall Model, arguing in 1970 for the lack of feedback inherent in it. ii The arrival of The

Agile Manifestoiii in 2001 validated many of Royce’s concerns, and several principles of

delivery have since sprung up. Some, such as Continuous Delivery and DevOps, are cognate

to the principles of Continuous Testing just described; and yet, barriers to achieving this ideal

remain.

A QUESTION OF METHOD: MINI-WATERFALLS UNDERMINE CONTINUITY

A major reason is that “Agility” at most organisations does not mean swiftly moving complete,

minimally viable, and rigorously tested systems through short delivery cycles. Nor does it

mean fail-fast experimentation, where we can learn from mistakes made early and

continually improve our understanding of the system being created. It instead means mini-

Waterfalls, where Business Analysts design systems, developers code them, and QA tests

them – all in that order. The difference is they try and squeeze it into six weeks, rather than

18 months.

These mini-Waterfalls remain in stark contrast to the principles set out above. They are

inherently siloed, and there is likewise little parallelism. Teams must instead wait for the

previous stage to be completed, and for the information they need to fulfil their siloed role

to be passed on. Testing new functionality therefore starts late, in contrast to a Shift Left

approach. When information is finally moved on, it is furthermore typically in a format that

must be manually converted during the next stage. This limits automation and produces

defects as uncertainty and miscommunication inevitably creep in.

Finally, there is a lack of either re-usability or feedback. As information has been translated

manually from one stage to the next, there is little inherent traceability across the delivery

pipeline. A change made to the system design or a new user story must in turn be reflected

manually in code and tests. This complex maintenance pushes QA further back, so that

defects are detected late, where they require far more time and expense to fix. It is then

http://curiositysoftware.ie/

Principles of Continuous Testing: A Practitioner’s Guide

© Curiosity Software Ireland Ltd. 2018

Page 7 of 29

equally difficult to update code and the design when defects are discovered, as the lack of

traceability renders it difficult to pinpoint the exact origin of the problem in tests or code,

PEOPLE, PROCESS, TECHNOLOGIES: PRACTICAL BARRIERS TO CONTINUOUS TESTING

These methodological barriers to Continuous Testing are reflected in the practices adopted

at each stage of the delivery lifecyle. A “mini-Waterfall” at a given organisation might look as

follows:

Figure 1

Each of these siloed stages leaks quality and increases the over-reliance on manual process.

This is the direct result not only of how the design, test, and development assets are created,

but particularly how they are stored:

1. Requirements are gathered from end-users and converted into a range of

unconnected documents and diagrams. This includes written user stories, behaviour-

driven scenarios, and requirements documents. They are usually written in

ambiguous natural language, far removed from the system logic. There are

sometimes additional diagrams, from hand-drawn models to “flat” business process

models. There is rarely formal dependency mapping or traceability between the

complex, interrelated components set out in these disparate files and formats.

Figure 1: The linear stages of mini-Waterfalls.

http://curiositysoftware.ie/

Principles of Continuous Testing: A Practitioner’s Guide

© Curiosity Software Ireland Ltd. 2018

Page 8 of 29

2. Code is derived from the imprecise, incomplete requirements. Design defects and

ambiguities account for the majority of defects produced in development,iv and the

majority of defect remediation cost.v The lack of dependency mapping passes

responsible to developers to envisage how vastly complex systems should fit

together, but no one person can have complete knowledge of such systems. This

throws up integration errors, while missing logic in the system design leaves many

decisions to developer assumption and imagination; when their decision deviates

from the user’s desired functionality, additional defects arise.

3. Test cases must likewise be derived manually from “flat”, imprecise system designs

that render automated techniques impossible. Testers instead attempt to string

together the disparate files in their minds, manually creating test cases to exercise

the system logic. This is slow and repetitious, formulating the same test steps in

overlapping test cases and inputting them one-by-one into Application Lifecycle

Management tools. It is further unsystematic, leading to low coverage tests in spite

of the wasteful overtesting. A simple system will contain more paths through its logic

than any one person can imagine in their heads, and research suggests than in 2018

66% of companies still struggle “merely deciding what to test.”vi Manually created

test cases therefore focus repeatedly on the obvious, “happy path” scenarios,

neglecting the negative paths and unexpected results most likely to cause system

collapse. Combine this with the logic absent in the requirements from which tests

are derived, and it is rare to find manually created test cases that test more than a

fifth of the logic contained in the system under test.

4. Test data must additionally be moved to test environments, and then found or

created for each specific test case. This manual effort creates further bottlenecks,

while the use of production data in less-secure QA environments risks costly non-

compliance. Complex data masking and transfers leave test teams waiting for data

that is almost always out-of-date by the time Ops teams have provisioned it.

Additional delays arise as test teams compete for the same copies of data, creating

cross-team constraints and undermining parallelism. Testers waste further time

searching through the unwieldy data sets for the exact data combinations needed to

http://curiositysoftware.ie/

Principles of Continuous Testing: A Practitioner’s Guide

© Curiosity Software Ireland Ltd. 2018

Page 9 of 29

execute their tests; however, production data is low-variety, drawn from expected

user behaviour, and by definition contains only past scenarios. It does not contain

the data needed to test new functionality or negative scenarios, and testing is pushed

further back as QA teams must create complex data scenarios by hand.

5. Automated test execution is necessary to execute the number of tests required to

rigorously test complex systems within short iterations. However, the time saved

automating test execution is frequently outweighed by the manual effort it

introduces. This is typically either complex, manual scripting, or fiddly keyword

configuration. As a result, rates of functional test automation remain low, no higher

than 30% at around one third of organisations, and less than 50% for the majority of

teams.vii Meanwhile, 67% of testers and developers reported in a 2018 survey that

attempts to adopt Continuous Testing have expanded total test execution time.viii

Automating execution further does nothing to improve the rigour of the test cases

being automated. As automation pioneer, Dorothy Graham, and Mark Fewster

comment, “it is the quality of the tests that determines whether or not bugs are

found, and this has very little, if anything, to do with automation.”ix

6. QA environments create further bottlenecks as testers wait for them to be

provisioned by Ops teams. They must then compete for the limited number that

become available. Interdependent components might similarly be unfinished, or

might be relied upon my critical live systems. Cloning complex distributed systems is

resource-intensive, costly, and time-consuming, while manual stubbing for

virtualisation is laborious and inaccurate. The result is that testers lack the

environments and tests in which to execute tests within any given iteration.

7. Manual maintenance is the greatest barrier to Continuous Testing. When a change

request or new user story arrives, testers and developers must first identify its impact

across vast and complex systems. The lack of formal dependency mapping renders

automated analysis impossible, and some upstream and downstream impacts are

inevitably overlooked. The unforeseen impact of apparently innocuous or slight

changes in turn throw up integration errors, and numerous high-profile outages

point to the damage these can create. Then there’s the time associated with

http://curiositysoftware.ie/

Principles of Continuous Testing: A Practitioner’s Guide

© Curiosity Software Ireland Ltd. 2018

Page 10 of 29

reflecting the impact of a change in the disparate QA assets. The manual derivation

of test cases, data, and automated tests undermines traceability to the system

design, while the test artefacts are further not traceable to one another. The

mountain of existing test assets must therefore be separately checked and updated

as the system changes, repeating much of the effort of creating them in the first

place. This is slow and laborious, and maintaining a valid regression pack can quickly

consume whole iterations. Alternatively, invalid tests can be allowed to simply pile

up, but then defects are thrown up due to invalid tests and not genuine bugs in the

code.

These commonplace practices are antithetical to the principles of Continuous Testing set out

in section one. They introduce siloes and manual effort at each stage, while pushing testing

ever-further back and undermining re-usability. We now consider practical steps that can be

taken to fulfil the above principles, creating full traceability and parallelism across an

automated delivery pipeline.

http://curiositysoftware.ie/

Principles of Continuous Testing: A Practitioner’s Guide

© Curiosity Software Ireland Ltd. 2018

Page 11 of 29

“Shift left” with Model-Driven
Development
 Ambiguous, incomplete designs not only introduce the majority of defects to software

development, they undermine collaboration between the Business and IT, while preventing

automation further “right”. Requirements must instead be housed in a format that is

complete, unambiguous, and accessible to both BAs and engineering teams. That way, they

can be leveraged directly in development and testing, without the bottlenecks and

miscommunication associated with their manual translation across siloes.

Model-Driven Development offers one way to do this, aligning the BAs and engineering teams

who can work in parallel from the same models. Flowchart modelling in particular has the

advantage of being already familiar to requirements gatherers. Many BAs already use formats

like Business Process Modelling Notation (BPMN), which can likewise be used to visually break

a system’s logic down into core cause-and-effect statements. Flowcharts therefore remain

easy-to-use for those without engineering backgrounds, yet provide the formality needed to

eliminate ambiguity and drive automated testing directly.

Figure 2: A simplified model of a log-in screen. BPMN-style modelling is already familiar to requirements gatherers, and offers
a way to unambiguously break a system down into its core cause-and-effect logic.

http://curiositysoftware.ie/
https://curiositysoftware.ie/agile-requirements-modelling/

Principles of Continuous Testing: A Practitioner’s Guide

© Curiosity Software Ireland Ltd. 2018

Page 12 of 29

Such formal modelling during the design phase is further a form of Shift Left testing, doing

the hard thinking earlier to eliminate the defects associated with ambiguous and incomplete

requirements. Missing logic is more easily spotted in visual models, while automated

algorithms can identify decision points with missing arrows. The ability to embed re-usable

subprocesses within master flowcharts also enables formal dependency mapping of

interrelated processes. The same models can then be provisioned to developers, providing

clear and concise specifications of the system logic, with full mapping between the

interdependent components:

A common objection to formal modelling is that it is not possible to completely model systems

within short iterations. Complete requirements are instead seen as an outdated artefact of

Waterfall approach, to be replaced by a constant stream of user stories and change requests.

Methodologies like Behaviour-Driven Developments then appear to offer a quicker way to

move from discrete statements of desired functionality to developing and testing them.

Figure 3: Formal, flowchart models can be rapidly built from existing tests and designs and recorded, and can drive testing
and development directly.

http://curiositysoftware.ie/

Principles of Continuous Testing: A Practitioner’s Guide

© Curiosity Software Ireland Ltd. 2018

Page 13 of 29

Fortunately, this is not a mandatory choice: it is possible to have clear, unambiguous

specifications, and still respond to change requests and new requirements in-sprint. Firstly,

there are a range of accelerators that automate or increase the agility of formal modelling.

The VIP Test Modeller provides a range of importers to convert written user stories and

existing test cases automatically to formal models. This includes Gherkin scenarios for

Behaviour-Driven Development:

Figure 4: Copying and pasting Gherkin Scenarios directly to formal models in The VIP Test Modeller.

The VIP Test Modeller further provides a UI Recorder to convert automated or manual activity

directly to flowchart models, working to reverse-engineer complete models from existing

systems rapidly and pay off technical debt.

Secondly, the ability to automate the creation of maintenance of rigorous QA artefacts means

that formal modelling can increase the ability to respond to fast-changing user needs,

whereas disparate and unconnected scenarios and user stories can simply introduce further

defects to test and development. The automation made possible in this “Shift Left, Shift

Right” approach will be described in the next sections, turning now to the ways in which

Model-Based Testing can automate and optimise TestDev tasks.

http://curiositysoftware.ie/
https://curiositysoftware.ie/resources/model-based-behaviour-driven-development/
https://curiositysoftware.ie/resources/model-based-behaviour-driven-development/
https://curiositysoftware.ie/resources/rapid-test-case-modelling-using-ui-recorder-automate-optmise-existing-test-activity-2/

Principles of Continuous Testing: A Practitioner’s Guide

© Curiosity Software Ireland Ltd. 2018

Page 14 of 29

“Shift right” to automate and
optimise TestDev
The mathematical precision of the flowchart models enables a “Shift Right” approach, having

already improved the design through Shift Left QA in the design phase.

Formal models deliver value directly after the design phase, without requiring wholesale

translation into new files and formats. Developers can code directly from the design, while

testers can overlay additional data and logic to generate optimised testing assets

automatically. This eliminates manual QA effort, while optimising testing to exercise the

system logic housed in requirements systematically. All test assets are further aligned and

traceable to a single asset, the model, meaning that updating the flowchart automatically

maintains tests.

QA in turn becomes an automated comparison of how the system should work, housed in the

design, to the system that has been developed in the code. The same designs from which

code has been built are used to generate and maintain the assets needed to rigorously test

fast-changing system: test cases, data, virtual services, and automated tests.

http://curiositysoftware.ie/

Principles of Continuous Testing: A Practitioner’s Guide

© Curiosity Software Ireland Ltd. 2018

Page 15 of 29

AUTOMATED TEST CASE DESIGN

QA teams can generate optimised test cases directly from the flowchart models, by virtue of

their mathematical precision. The flowcharts serve as directed graphs, where the paths from

their start to end nodes are equivalent to test cases. Automated graphical analysis can

therefore identify the test cases contained in the model automatically, much like how a GPS

identifies possible routes through a city street map:

Figure 5: Paths through the flowchart models are equivalent to test cases, that can be identified automatically.

Automated test case generation not only eliminates slow and repetitive manual test creation,

it also helps to ensure the rigour of testing. Automated coverage algorithms can generate test

cases that exercise every path in the system model exhaustively. This tests all the logic housed

in the system designs, with testing growing more rigorous as designs become more complete.

Coverage algorithms can similarly generate a set of optimised test cases to focus testing on

new or critical functionality. This provides a reliable, risk-based approach to reducing the

number of tests when there is not time to execute the high volume of tests associated with

even simple systems. The VIP Test Modeller offers granular coverage-driven test generation,

varying coverage by feature or subprocess. Test cases can target higher risk, higher visibility

functionality, while exercising the surrounding logic as much or as in the remaining time.

http://curiositysoftware.ie/
https://curiositysoftware.ie/automated-test-case-design/

Principles of Continuous Testing: A Practitioner’s Guide

© Curiosity Software Ireland Ltd. 2018

Page 16 of 29

This Risk-Based approach generates the smallest set of test cases required to rigorously test

important functionality, reducing test execution time without introducing negative risk. Test

coverage is maximised where it matters, while wasteful over testing is avoided: the coverage

algorithms will generate the smallest set of tests needed to exercise every important node,

consolidating overlapping test steps into fewer test cases. Model-Based Testing therefore

provides a reliable, requirements driven approach to identifying what to test.

The automated test design also maximises observability and the accuracy of feedback created

by testing, by virtue of the link created between test and requirement logic. The test steps

are equivalent to the logic gates and nodes in the cause-and-effect models. When tests fail,

root cause analysis can therefore pinpoint the moment of failure in the nodes shared by

several failing tests. A more exhaustive set of tests can further be generated to focus on the

logic associated with failed tests, to maximise visibility and avoid the creation of false test

results by false positives.

With Model-Based Testing, QA teams know that they got the right result, for the right reason.

This maximises testing confidence, while defect reports highlight to developers exactly where

in the system design a defect has most likely occurred, working to remediate defects as

quickly and accurately as possible.

http://curiositysoftware.ie/

Principles of Continuous Testing: A Practitioner’s Guide

© Curiosity Software Ireland Ltd. 2018

Page 17 of 29

 “JUST IN TIME” TEST DATA

Testers can further specify test data at the model level, automatically generating data at the

same time as test cases are created. This enables on demand, “just in time” access to

compliant data with which to execute every possible test, avoiding the delays and impaired

quality associated with slowly moving low-variety production data to QA environments.

Synthetic data generation offers the means to create rich, realistic data to execute every test,

without the legislative risks associated with production data. The VIP Test Modeller provides

over 500 combinable data functions, to quickly create all the data required for optimal test

coverage. This includes the negative scenarios and outliers not available in production data,

as well as data combinations needed to test new functionality:

Figure 6: 500+ easy-to-use data generation functions create data variables needed to execute every test step.

http://curiositysoftware.ie/
https://curiositysoftware.ie/just-in-time-test-data/
https://curiositysoftware.ie/resources/data-generation-add/

Principles of Continuous Testing: A Practitioner’s Guide

© Curiosity Software Ireland Ltd. 2018

Page 18 of 29

The dynamic data functions can be defined directly in the nodes of the flowchart models, or

can be figured in Excel for data-driven automation frameworks to consume:

Figure 7: The “just in time” data can be consumed directly by data-driven automation frameworks from Excel, or can be

overlaid at the model level for Test Driven Automation.

The functions are resolved “just in time” as tests are created or executed, and can further

reference a range of connected databases and files. This draws on the most up-to-date system

data during test execution, using automated combinatorial techniques to combine the values

into new data sets for the latest test cases. Dynamic, “just in time” data resolution renders

test data up-to-date by definition, providing QA with all the data they need for rigorous

testing, when and where they need it.

http://curiositysoftware.ie/

Principles of Continuous Testing: A Practitioner’s Guide

© Curiosity Software Ireland Ltd. 2018

Page 19 of 29

ON DEMAND ENVIRONMENTS

The environments in which to execute the rigorous test cases and data can similarly be spun

up from data defined at the model level.

With accurate and automated service or message virtualisation, this does not require complex

stubbing, nor resource-intensive copies of complex systems. Instead, a service definition is

automatically profiled and parsed, and converted into a dependency model of the Request

and Responses associated with the service or API. The same sort of automated combinatorial

techniques used to generate test cases and data are then applied, generating rich virtual data

that contains every combination of Request and Response:

Figure 8: Comprehensive virtual data is quickly generated from parsed service definitions. It is moved automatically to live

systems or sandbox environments.

The complete virtual data can be used to provide environments for rigorous functional

testing, or individual combinations can be consumed by virtualisation tools for quick and

accurate unit testing.

The same approach facilitates automated API testing, without the need to manually define

complex tests and expected results from poorly documented, fast-changing services. The

high-speed VIP workflow engine can exercise Requests generated from The VIP Test Modeller

against a live system or sandbox environment, rigorously testing every route to a set of virtual

end-points. The actual Responses are then compared to expected Responses that have been

defined systematically form the model, automatically generating accurate run results.

http://curiositysoftware.ie/
https://curiositysoftware.ie/products/

Principles of Continuous Testing: A Practitioner’s Guide

© Curiosity Software Ireland Ltd. 2018

Page 20 of 29

COMPLETE TEST AUTOMATION

By this point, developers have been provided with clear and complete specifications from

which to code, and QA have created the test cases, data, and environments needed to

validate the developed system. All test assets have been generated directly from the model,

keeping them aligned as they are generated from logical definitions of the latest system.

The same flowcharts can be used to generate automated tests, automatically comparing the

developed system to the requirements models. The VIP Test Modeller offers a simple, fill-in-

the-blanks approach to defining automation logic at the model level, with drop-down menus

of available actions and data:

Figure 9: A scriptless, fill-in-the-blanks approach to defining automated test actions.

These actions are equivalent to the test steps in the automatically generated test cases, and

are ordered to create automation modules. Each action has static or dynamic data associated

with it, executing each test case automatically with the test data defined at the model level.

http://curiositysoftware.ie/
https://curiositysoftware.ie/complete-test-automation/

Principles of Continuous Testing: A Practitioner’s Guide

© Curiosity Software Ireland Ltd. 2018

Page 21 of 29

A range of accelerators simplify the process, making test execution automation possible

without slow and technical scripting. An object scanner automatically generates page object

models from UIs, complete with the data and message activity needed to exercise the scraped

elements. The UI Recorder similarly records all the information needed for automated

testing, using the keyword, drop-down approach shown above to assign the scraped elements

to models.

Manual testers and experienced automation engineers alike can in turn move from the

system under test to automated testing in minutes, adopting a “low code” approach to

eliminate the delays associated with manual scripting or fiddly keyword configuration. The

automated testing further goes far beyond scriptless techniques like record and playback; by

assigning re-usable automation logic to individual nodes in the model, the recorded activity

and scraped logic can be combined and recombined to maximise test coverage.

The low code approach also maximises re-usability, a core principle of Continuous Testing. A

central repository provides access to modelled components that already have automation

logic, data, and test cases associated with them. QA teams can drag-and-drop the common

functionality to new, master flowcharts, quickly assembling the system components into end-

to-end models. Testing in turn becomes faster the more it is performed, working from the

efforts of previous iterations to test new functionality rigorously.

Automated tests generated in The VIP Test Modeller additionally enable a high degree of

granularity and observability, in spite of the simplicity of their creation. Mid-test assertions

validate that the system is performing in accordance with the expected result at every point.

This makes sure that the right end result has been reached for the right reason, in contrast to

automated tests that have checks only at the end. Not only does this avoid the invalid test

results created by false positives, it creates a trail of bread crumbs through the system logic

when tests fail. Root cause analysis can then be applied, to trace this trail to the exact point

in the system that is producing the automated test failure.

http://curiositysoftware.ie/
https://curiositysoftware.ie/resources/rapid-test-case-modelling-using-ui-recorder-automate-optmise-existing-test-activity-2/

Principles of Continuous Testing: A Practitioner’s Guide

© Curiosity Software Ireland Ltd. 2018

Page 22 of 29

Robotic Process Automation
manages the TestOps
The Model-Based approach now set out automates and optimises test engineering or

“TestDev” tasks: tasks that develop artefacts for testing new system logic. Test teams using

this approach can work from accurate system designs to generate optimised test cases, data,

virtual services, and automated scripts.

However, automating TestDev alone is not enough to achieve the end-to-end automation

needed for Continuous Testing. It does nothing to remove the repetitious QA processes that

surround test asset creation and execution. These rule-based processes generally focus on

organisational practices and internal communication. They involve inputting testing metadata

across a range of chat, email, and Application Lifecycle Tools. Typical “TestOps” tasks include:

1. Writing teams on chat tools like Slack as tests run or errors are found;

2. Emailing run results and test metrics to managers;

3. Inputting test steps into ALM tooling and updating test results;

4. Adding bug reports to JIRA;

5. Maintaining to do lists in shared sprintboards.

These are all invaluable tasks that are paramount to good cross-team collaboration and

project management. However, they are largely auxiliary to the bread-and-butter of

executing high quality tests against a system.

It is in this world of operations that Robotic Process Automation, or RPA, initially arose. RPA

refers to the use of non-invasive bots that perform rule-based tasks otherwise performed by

a human. This typically involves workflows that act in the background to rapidly execute

repeatable tasks. Test automation and RPA harness similar technologies, and RPA is a growing

trend in QA, as test teams increasingly attempt to automate tasks surrounding test execution.

http://curiositysoftware.ie/

Principles of Continuous Testing: A Practitioner’s Guide

© Curiosity Software Ireland Ltd. 2018

Page 23 of 29

The goal of Robotic Process Automation then is to automate the broader tasks that facilitate

high-speed, high coverage testing, with bots executing the repetitious heavy-lifting otherwise

performed by test teams. More than simply mimicking what test teams do, effective RPA

needs to perform the tasks across the technologies in use at an organization. This introduces

the concept of “DevOps++”, where existing technologies are connected by non-invasive

workflows to keep data aligned across the whole delivery pipeline:

Figure 10: Robotic Process Automation mimics the tasks QA teams perform, across existing technologies.

The VIP Test Modeller integrates with VIP to combine optimised test automation with high-

speed RPA. VIP is a fully connected, high-speed workflow engine that offers a comprehensive

range of out-of-the-box connectors and API support. As tests are maintained in The VIP Test

Modeller, VIP will therefore keep test metadata up-to-date across technologies, inputting test

cases, data, and virtual services into Application Lifecycle Management tools and QA

environments. VIP further executes automated tests generated in The VIP Test Modeller

across distributed environments, updating run results in requisite fields across tools and

providing email and chat updates.

VlP’s connectivity enables it to maintain data across multiple platforms simultaneously. For

instance, if test cases are stored in HP ALM but run results in JIRA, VIP will simultaneously

store the latest test case information in HP ALM fields, but update the run results in the

relevant JIRA tickets as tests are executed. This replaces the need for testers to repetitiously

copy and edit data across numerous tools, allowing them to focus on developing test assets

to test new and evolving logic.

http://curiositysoftware.ie/
https://curiositysoftware.ie/products/
https://curiositysoftware.ie/resources/complete-test-automation-using-selenium-2/

Principles of Continuous Testing: A Practitioner’s Guide

© Curiosity Software Ireland Ltd. 2018

Page 24 of 29

VIP similarly automates the internal communications that are necessary for a functioning test

team, but can create repetitious processes. Email reporting and alerts can be set up, to notify

managers or test teams of progress, while task boards can be automatically updated to assign

tasks as tests are created and executed.

Figure 11: Re-usable, out-of-the-box workflows create high-performance bots that perform rule-based tasks.

The combination of RPA and end-to-end TestDev automation allows QA Teams more time to

focus on testing new functionality at the start of each iteration. RPA handles the TestOps tasks

that facilitate testing, while the TestDev tasks they perform are optimized and automated.

Testers can produce higher quality test assets faster, invoking re-usable workflows from a

common technology like Slack to perform TestOps tasks for them.

http://curiositysoftware.ie/
https://curiositysoftware.ie/resources/robotics-process-automation-test-automation/

Principles of Continuous Testing: A Practitioner’s Guide

© Curiosity Software Ireland Ltd. 2018

Page 25 of 29

The greater degree of connectivity between tools further aligns teams and technologies

closely, avoiding siloes and the delays associated with them. Connecting existing technologies

maximises their value and remove the need to manually convert information from one

technology to the next. This not only reduces the manual effort required of testers, but

improves the flow of information between systems.

DevOps++ accordingly enables a greater amount of metadata to be collected during testing,

using this information in future to inform testing decisions. This drives up confidence in test

results and enables evidentially informed QA, where new tests can be generated dynamically

based on test results and history. Collecting sufficient metadata will further be a prerequisite

to any form of artificially intelligent testing. This might include directly harnessing test results

to auto-generate a new set of test cases that focus in on possible root causes of test failures,

for instance.

http://curiositysoftware.ie/

Principles of Continuous Testing: A Practitioner’s Guide

© Curiosity Software Ireland Ltd. 2018

Page 26 of 29

Accurate development and
rigorous testing in-sprint
The “Shift Left, Shift Right” approach now set out enables test and development teams to

react quickly to fast-changing systems. The traceability introduced by Model-Driven

approaches automates maintenance of existing test assets, while the upstream and

downstream impact of a change is identifiable from the formal models. QA and development

teams can therefore focus on developing new functionality, updating only the parts of

systems and test environments that have been impacted by a change.

Firstly, developers know exactly what needs to be updated when new user stories or change

requests are incorporated into existing models at the start of an iteration. The full

dependency mapping made possible by formally modelling the system makes it far easier to

spot the impact across interdependent components reliably; a change made to one model

will be reflected automatically in all master flows in which the updated functionality is a

subprocess. Development teams can then focus on implementing the upstream and

downstream impact of a change request on the existing system, working to avoid the defects

and system outages associated with unforeseen consequences.

The automation of test maintenance meanwhile allows QA teams to validate any changes

made to the system rigorously, during the same iteration as the change has been made.

Generating automated tests, data, and virtual services from a single model creates a single,

central QA artefact. Update the flowchart, and you maintain all your test assets in one fell

swoop. New and rigorous test packs can be executed as systems evolve, quickly and rigorously

testing any changes made to a system before it is released.

http://curiositysoftware.ie/

Principles of Continuous Testing: A Practitioner’s Guide

© Curiosity Software Ireland Ltd. 2018

Page 27 of 29

Continuous Testing: an
ongoing process
Technologies and best practices can make Continuous Testing a reality today. A Model-Driven

approach to designing, development, and testing systems not only fulfils the core principles

of Continuous Testing, but it can eliminate the practical barriers to its adoption.

Formal modelling during the design phase facilitates close alignment between engineering

teams and requirements gatherers, all of whom work from the same flowcharts. This

collapses the once linear stages of “mini-Waterfalls”, and the delays these siloes create. It

further enables “Shift Left” testing during the design phase, working to eradicate

requirements defects early and design systems that are both higher quality and testable.

Test and development teams can further work in parallel from the same models, adopting a

“Shift Right” approach where rigorous test artefacts are derived directly from fast-changing

systems. QA then becomes a largely automated comparison of the developed system to the

user’s desired functionality, accurately captured in the flowchart models that drive testing.

Meanwhile, re-usability is maximised and the elimination of manual test maintenance further

frees test teams to focus on new or critical functionality.

Robotic Process Automation can complete the automation of otherwise slow and manual

processes, while connecting existing technologies maximises the flow of information between

systems and the amount of feedback gathered. The greater degree of machine data and

testing metadata collected in turn enables evidence-based testing, working from testing

history to focus QA on new, critical, and high-risk functionality.

This approach to Continuous Testing is an ongoing process of uncovering more information

about the system under test, feeding it back into the flowchart model with each iteration. The

more complete the models become through such experimentation, the more rigorous the

testing. Meanwhile, observability is maximised, allowing ever-more granular insights into the

system to be harnessed, building better tests and better systems with each new iteration.

http://curiositysoftware.ie/

Principles of Continuous Testing: A Practitioner’s Guide

© Curiosity Software Ireland Ltd. 2018

Page 28 of 29

Find out more
Please visit the Curiosity website to discover more about practical solutions to adopting

Continuous Testing. A range of hands-on demos are available on Youtube, if you would like

to see these approaches working in practice.

If you would like to find out more, or arrange a demo, please do not hesitate to get in touch

on info@curiosity.software, or using the details below.

Stay up-to-date

Keep up-to-date with the

latest Curiosity resources.

Follow us for news and

resources.

Stay up-to-date with blogs

and videos.

Get in touch

Info@curiosity.software

Curiosity Software Ireland

Unit 6, The Mill

Bray

Co. Wicklow

Ireland

+353 1254 4350 (Ireland)

+1 914 297 7512 (USA)

TWITTER, TWEET, RETWEET and the Twitter logo are trademarks of Twitter, Inc. or its affiliates.

http://curiositysoftware.ie/
https://twitter.com/CuriositySoft
https://curiositysoftware.ie/vip-videos/
https://curiositysoftware.ie/solutions/
mailto:https://www.youtube.com/channel/UCKxkW0Jzlrf9--FYlqNho3Q/videos
mailto:info@curiosity.software
https://curiositysoftware.ie/vip-videos/
https://curiositysoftware.ie/vip-videos/
https://twitter.com/CuriositySoft
https://www.linkedin.com/company/18309745/
https://www.linkedin.com/company/18309745/
mailto:Info@curiosity.software
https://www.linkedin.com/company/18309745/

Principles of Continuous Testing: A Practitioner’s Guide

© Curiosity Software Ireland Ltd. 2018

Page 29 of 29

End Notes
i Margaret Rouse (2018), “DRY Principle”, retrieved from https://whatis.techtarget.com/definition/DRY-
principle on 05-12-18.
ii Winston W. Royce (1970), "Managing the Development of Large Software Systems", Technical Papers of
Western Electronic Show and Convention (WesCon) (Los Angeles, USA).
iii Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin Fowler, James
Grenning, Jim Highsmith Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick Robert C. Martin, Steve Mellor, Ken
Schwaber, Jeff Sutherland, Dave Thomas (2001), “The Agile Manifesto”. retrieved from
https://agilemanifesto.org/ on 05-12-18.
iv Bender RBT (2009), Requirements Based Testing Process Overview, pp. 2, 16. Retrieved from
http://benderrbt.com/Bender-Requirements%20Based%20Testing%20Process%20Overview.pdf on 05-12-18;
Soren Lausen and Otto Vinter (2001), "Preventing Requirement Defects: An Experiment in
ProcessImprovement", in Requirements Engineering (2001, 6:37-50), p. 38. Retrieved from
http://www.itu.dk/people/slauesen/Papers/PrevDefectsREJ.pdf on 05-12-18; P Mohan, A Udaya Shankar, K
JayaSriDevi (2012), "Quality Flaws: Issues and Challenges in Software Development", in Computer Engineering
and Intelligent Systems (2012, 3:12:40-48), p. 44. Retrieved from
www.iiste.org/Journals/index.php/CEIS/article/viewFile/3533/3581 on 05-12-18.
v P Mohan, A Udaya Shankar, K JayaSriDevi (2012), "Quality Flaws: Issues and Challenges in Software
Development", in Computer Engineering and Intelligent Systems (2012, 3:12:40-48), p. 45. Retrieved from
www.iiste.org/Journals/index.php/CEIS/article/viewFile/3533/3581 on 05-12-18; Bender RBT (2009),
Requirements Based Testing Process Overview, p. 2. Retrieved from http://benderrbt.com/Bender-
Requirements%20Based%20Testing%20Process%20Overview.pdf on 05-12-18.
vi Vanson Bourne and Panaya (2018), survey of over 300 IT decision makers in the UK and US. Cited from Islam
Soliman (2018), “AI & automation vs humans: the future of software testing?”, DevOpsOnline (16-11-18).
Retrieved from http://www.devopsonline.co.uk/14159-2-ai-and-automation-vs-human-testers/ on 05-12-18.
vii Ibid.
viii KMS Technology (2018), survey of 135 developers and testers. Cited from Islam Soliman (2018), “Continuous
Testing Survey Results Released”, Software Testing News (04-12-18). Retrived from
https://www.softwaretestingnews.co.uk/continuous-testing-survey-results-released/ on 05-12-18.
ix Dorothy Graham and Mark Fewster (2009), “That’s No Reason to Automate”, in Better Software (July/August
2009), p. 33. Retrieved from http://www.dorothygraham.co.uk/downloads/generalPdfs/NoReasonAut.pdf on
05-12-18.

http://curiositysoftware.ie/
https://whatis.techtarget.com/definition/DRY-principle
https://whatis.techtarget.com/definition/DRY-principle
https://agilemanifesto.org/
http://benderrbt.com/Bender-Requirements%20Based%20Testing%20Process%20Overview.pdf
http://www.itu.dk/people/slauesen/Papers/PrevDefectsREJ.pdf%20on%2005-12-18
http://www.iiste.org/Journals/index.php/CEIS/article/viewFile/3533/3581
http://www.iiste.org/Journals/index.php/CEIS/article/viewFile/3533/3581%20on%2005-12-18
http://benderrbt.com/Bender-Requirements%20Based%20Testing%20Process%20Overview.pdf
http://benderrbt.com/Bender-Requirements%20Based%20Testing%20Process%20Overview.pdf
http://www.devopsonline.co.uk/14159-2-ai-and-automation-vs-human-testers/
https://www.softwaretestingnews.co.uk/continuous-testing-survey-results-released/
http://www.dorothygraham.co.uk/downloads/generalPdfs/NoReasonAut.pdf

	05-12-2018
	Principles of Continuous Testing
	A Practitioner’s Guide
	Table of Contents

	Principles of Continuous Testing
	New approach, same barriers?
	A question of method: mini-Waterfalls undermine continuity
	People, process, technologies: practical barriers to Continuous Testing

	“Shift left” with Model-Driven Development
	“Shift right” to automate and optimise TestDev
	Automated Test Case Design
	“Just in Time” Test Data
	On Demand Environments
	Complete Test Automation

	Robotic Process Automation manages the TestOps
	Accurate development and rigorous testing in-sprint
	Continuous Testing: an ongoing process
	Find out more
	Stay up-to-date
	Get in touch

	End Notes

