
White Paper
IBM Cloud Event Management February 2018

To put the Ops in DevOps,
shift event management to the left

2 To put the Ops in DevOps, shift event management to the left

These challenges have led to an evolving role that Ops play.
Luckily for Ops professionals, this evolutionary progression is
far from revolutionary. The evolving role of Ops will lead to a
positive direction by building on best practices and time-tested
processes — rather than scrapping them and starting from
scratch. Within a mature enterprise that has invested highly
in IT, disciplines such as Event and Incident Management
depend upon a key set of capabilities that are equally valuable
throughout the transition to DevOps.

The proximity of developers to operations (and the cohesion
of operations around those teams) are enhanced by the
proven and time-tested methodologies. Integrated tools
need to consume events from highly heterogeneous
environments, minimizing the amount of management
“noise” that is presented to the people handling the events.
In most situations, actual humans are still required to
respond to events. Limiting this human activity to issues
that truly deserve a human touch can be achieved with
runbook automation, analyzing historical trends and
machine learning.

Event and Incident Management tools are even more critical
than they ever were as teams shift to practices such as DevOps
and Site Reliability Engineering. A common practice is to
shift from a large number of lower-skilled people to a smaller
number of substantially highly skilled engineers. These highly
skilled Ops professionals need to overcome on-going time
constraints by reducing the “noise” generated by the managed
systems. They must increase adoption of automation and work
closely with Dev to prepare for continuous roll outs. These
highly skilled Ops professionals don’t have time to sift through
large files and performance metrics just to restore a service.

Operations professionals who are in the early stages of
embracing DevOps methodologies face some significant
challenges. Some of these challenges have been common
for decades, while others are more unique to DevOps
situations. It’s not new for business stakeholders to apply
increasing pressure to achieve key business and efficiency
goals. However, the continuous integration and continuous
delivery that are typical in DevOps methodologies bring
added pressure: release cycles that will be measured by
value — delivered in days (or even hours) rather than weeks
or months.

Development teams have embraced agile practices and
produce production-ready code in short iteration. They
make the most of cloud technologies to provide auto-scaling
microservice architectures at unprecedented levels of
scale and modularity. Dev and Ops teammates must work
together to implement an integrated delivery toolchain —
one that can build, test and deploy a new release version
at the touch of a button. All the while, expectations and
criticality have never been higher; organizational leaders
expect immediate production readiness, ongoing “five
nine availability” (99.999% availability) and high speed
performance. Whether your organization is in the beginning
DevOps stages or whether you’re further along the
transformation path, the business objectives and
measurements have not really changed. The KPIs are
still mean time to restore service, mean time to repair,
mean time to fix failures and pressure on costs.

Dev teams commonly produce highly instrumented code
that provides a dense trail of data that relates to the state
of the applications. These applications are deployed in a way
that inherently produces high volumes of measurements and
status information. This information includes runtimes and
middleware that themselves constantly report their own state.
The runtimes, in turn, will be underpinned by physical and
virtual compute, along with network and storage infrastructure
that also is monitored with tools that provide a continuous
stream of state information. Operations are accustomed to
high event volumes, but variety and volume are increasing
commensurately with the complexity of these systems.

IBM Cloud Event Management 3

Business needs
– Agile application delivery
– User experience and reliability
– Lean operations management

OpsDev

Dev Ops

Dev goal: Deliver applications with
speed, quality and control

Ops goal: Few problem tickets, faster resolution

Mean-time-identity
(MTTI)

Mean-time-to-know
(MTTK)

Mean-time-to-fix
(MTTF)

Mean-time-to-verify
(MTTV)

Think

Code

Deliver

Learn

Culture

Manage

RunDev Test Stage ProdStop

in efficiency, especially when the teams use a common set
of tools. For example, making it easy for a developer to author
an automatic response, or a runbook, or a suppression rule
means that an operator is less likely to escalate an incident.
Separating the signal of service status from the “noise” of
service state will make all the difference when you need to
know quickly that there is a problem with an application or
service before users notice — or when you need to alert them
about it. This approach may also prevent Ops teams from
unnecessarily responding to a page indicating a benign
application state.

All of which reduces the probability of anyone being awakened
at 3 AM!

Shift right Dev, shift left Ops
The DevOps transformation that’s presented to Operations
and Development teams is analogous to, and has the
potential of, the widespread adoption of Agile Software
Development practices just a few years ago. Prior to this,
there was often a “brick wall” between coders and software
Quality Assurance (QA) professionals. These days, developers
and QA professionals consistently work closely together.
The analogous “brick wall” between modern Development
and Operations groups is slowly tumbling down.

It is becoming more common to see “shift right Dev” as well
as “shift left Ops”, where the quality of a running service is a
shared responsibility. This type of overlap can pay dividends

Figure 1: Shift Dev right and shift Ops left to deliver applications with speed, create a reliable end-user experience, and support lean operations management.

© Copyright IBM Corporation 2018

IBM Corporation
New Orchard Road
Armonk, NY 10504

Produced in the United States of America
February 2018

IBM, the IBM logo, ibm.com, and Netcool are trademarks of
International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might
be trademarks of IBM or other companies. A current list of IBM
trademarks is available on the Web at “Copyright and trademark
information” at www.ibm.com/legal/copytrade.shtml.

This document is current as of the initial date of publication and may
be changed by IBM at any time. Not all offerings are available in every
country in which IBM operates.

THE INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”
WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING
WITHOUT ANY WARRANTIES OF MERCHANT ABILITY, FITNESS FOR
A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF
NON-INFRINGEMENT. IBM products are warranted according to the
terms and conditions of the agreements under which they are provided.

Please Recycle

06013506-USEN-00

Event and Incident Management processes, supported by the
right tools, are critical in empowering DevOps teams to achieve
these aims. They need tools that can:

• Filter out events that are not likely to be service-affecting.
A trace message from an app log is not worth anyone’s
attention, unless they need to view it as a part of a
diagnostic procedure. A synthetic user transaction timeout
may require immediate investigation.

• Correlate events that are symptoms of the same cause,
so that there is one notification per true incident, rather
than one for each symptom event.

• Enrich events with context, so that if a single service
instance fails in a redundant array of, say, five instances,
the event gets routed to the operations console — but
people are not awakened unless the service is affected.

• Implement X-in-Y policies. In a large and complex system,
a single microservice-to-microservice HTTP timeout may
not be a huge problem. But you may want to investigate
if you start getting 20 timeouts per second.

• Collaborate with development on the implementation
and definition of runbooks for common failures. Tie those
runbooks to incidents as they occur, so that the first
responder has a process that they can follow to reinstate
a service or prevent an outage in the first place. And, if
possible, find a way to automate those runbooks. If the
problem is a failed process, then restart it. A disk is full?
Free up some space.

• Gain insights from the reams of data your tool collects
by the application of artificial intelligence and machine
learning techniques. Apply that insight to streamline the
incident resolution and identification process so that you
can maximize operational efficiency.

With Dev and Ops working together moving forward,
organizations can continue to build on what Ops has built
over the last few decades. The common DevOps challenges
can be embraced and turned into catalysts for improvement
and innovation. Institute the right tools and platforms to
foster more-productive use of people’s time, and make the
most of automated knowledge sharing and collaborative
problem-solving. These actions can turn the potential
benefits of DevOps methodologies into an achievable reality.

To find out how to restore service disruptions promptly,
prepare for the operational support of continuous application
rollouts into production, and find ways to drive improved
efficiency over time, explore IBM Cloud Event Management.

For more information
To learn more about IBM Cloud Event Management,
please contact your IBM representative, or visit
the IBM Cloud Event Management website:
ibm.com/cloud/event-management.

http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/cloud/event-management

