
Introducing
DevOps into
Your Project
eGuide

http://techwell.com

3
Making DevOps Evolution
Happen

4
You’re Ready for DevOps—
but Is Your Workplace?

7
7 Ways to Change the
Culture for DevOps
Success

10
DevOps in the Trenches:
Get Started with Metrics

11
How Continuous Testing
Is Done in DevOps

14
Shifting Right Offers New
Possibilities for Agile and
DevOps Teams

18
Embedding Performance
Engineering into
Continuous Integration
and Delivery

19
Making DevOps Evolution
Happen: A Conversation
with Helen Beal

22
TechWell Hub Takeovers

24
Additional Resources

2C O P Y R I G H T 2 0 2 0

I N T R O D U C I N G D E V O P S I N T O Y O U R P R O J E C T eGuide
In order to adopt DevOps, organizations must fully embrace openness, experimentation, innovation, and collaboration. While you might feel
pressure to introduce DevOps into your project, what if your company culture isn’t ready? This eGuide rounds up a collection of resources
to help you get started on your DevOps journey, which entails creating a generative culture and optimizing processes in a way that will
ultimately lead to business success.

Making DevOps Evolution Happen
It takes effort to evolve an organization’s culture, processes, and technology to
optimize performance for a DevOps environment, and it all comes down to the
people. Large-scale mobilization requires a focus on people at all levels, empower-
ing them to discover and make the changes that will help them most. Here’s how.

You’re Ready for DevOps—but Is Your Workplace?
In order to adopt DevOps, organizations need to be able to embrace the open-
ness it requires, encourage experimentation and innovation, and work across de-
partmental silos. You may be ready to encourage collaboration and communica-
tion to reap the benefits, but what if your company culture isn’t? Here’s how you
can influence your organizational dynamics to lay the groundwork for DevOps.

7 Ways to Change the Culture for DevOps Success
The hard part of successful DevOps isn’t implementing the technology; it’s
ensuring you have the right culture in your organization. You need to break down
silos and align competing priorities and individual incentives to gain real benefits
from DevOps. Move beyond thinking about technology alone and look at the
people side of the equation. Here are seven ways to create a successful team that
delivers the benefits of DevOps.

DevOps in the Trenches: Get Started with Metrics
DevOps initiatives often start with one silo seeking to be more collaborative with
others. This “DevOps in the trenches” isn’t ideal, but it is a way to get DevOps
bootstrapped and begin seeing benefits. Here are some tips for how to get start-
ed doing DevOps based on what role you’re in, with key metrics to help.

How Continuous Testing Is Done in DevOps
DevOps does speed up your processes and make them more efficient, but
companies must focus on quality as well as speed. QA should not live outside the
DevOps environment; it should be a fundamental part. If your DevOps ambitions
have started with only the development and operations teams, it’s not too late to
loop in testing. You must integrate QA into the lifecycle in order to truly achieve
DevOps benefits.

Shifting Right Offers New Possibilities for Agile and
DevOps Teams
The shift-right concept originates from testing. But agile and DevOps teams also
can use it to improve their systems and service to the client. However, there is a
complicating factor: Different people have different explanations for what shifting
right is. Let’s look at the different forms of shifting right, what the potential bene-
fits are, and who should ideally be involved in your shift-right process.

Embedding Performance Engineering into Continuous
Integration and Delivery
In the world of continuous integration and continuous delivery, the importance of
ensuring good performance has increased immensely. While functional and unit
testing are relatively easier to integrate into these processes, performance engi-
neering has typically raised more challenges. Here’s how you can mitigate them.

Making DevOps Evolution Happen: A Conversation
with Helen Beal
Helen Beal, DevOpsologist at Ranger4, chats with TechWell community manager
Owen Gotimer about making your DevOps evolution happen, micro-bonus pro-
grams, and the neuroplasticity of squirrels.

TechWell Hub Takeovers
Each month a thought leader joins the TechWell Hub for a Slack Takeover. These
chats give our community members an opportunity to ask questions, share
challenges, and grow as software professionals by having conversations with an
expert. Here’s a sample of some of the questions and answers from a few of our
DevOps-oriented Slack Takeovers.

Additional Resources

In this DevOps eGuide

http://techwell.com

3
Making DevOps Evolution
Happen

4
You’re Ready for DevOps—
but Is Your Workplace?

7
7 Ways to Change the
Culture for DevOps
Success

10
DevOps in the Trenches:
Get Started with Metrics

11
How Continuous Testing
Is Done in DevOps

14
Shifting Right Offers New
Possibilities for Agile and
DevOps Teams

18
Embedding Performance
Engineering into
Continuous Integration
and Delivery

19
Making DevOps Evolution
Happen: A Conversation
with Helen Beal

22
TechWell Hub Takeovers

24
Additional Resources

3C O P Y R I G H T 2 0 2 0

I N T R O D U C I N G D E V O P S I N T O Y O U R P R O J E C T eGuide

The world is in a state of digital disruption. The World Economic
Forum says we are in the Fourth Industrial Revolution, typified by AI
and the blurring of lines between human and technology. Carlota
Perez thinks we are at the turning point of the Fifth Industrial Revo-
lution: the precipice of a Golden Age. Organizations all over the plan-
et are transitioning their ways of working from project to product to
ensure their position in the new order.

And they are all finding it’s a constant race to keep up; in some cas-
es, they feel they are sprinting to stand still. It takes effort to evolve
an organization’s culture, processes, and technology to optimize
performance for a DevOps environment, and it all comes down to
the people.

Our people need to unlearn behaviors and practices some have
spent several decades mastering. We need to unpick onerous pro-
cesses designed to protect us and break dependencies in order to
operate at the speed demanded of us.

We have to reframe failure as an improvement opportunity, build
dynamic learning and safety cultures, distribute authority, and ex-
pect our leaders to enlighten us to be empowered and autonomous.
We must train ourselves to think of end-to-end value streams and to
constantly inspect, adapt, and shorten them, elevating value-adding
activities above all else. We also need to automate, from idea to the
moment value is realized, and ensure we use customer feedback to
inform our next iteration in the best way possible.

It’s all a very big ask. We know where we are now, but it’s hard to
see how to disentangle ourselves from the strangulating processes
and bureaucracy we’ve spent years developing for the right reasons.

Our human and technology
systems are highly complex
and frequently fragile, and
we can’t expect to reach
our long-term DevOps
goals overnight. If it were
easy, everyone would have
already done it.

Every organization looks
similar, but different—like
a fingerprint. The same

patterns appear over and over: governance, regulations, compliance,
and security hamstringing us, the impossibility of prioritizing techni-
cal debt over much-needed functional changes, and financial models
that drive undesired behaviors. The same patterns to solve these
challenges also appear over and over.

The key is to not be dismayed or disoriented by the scale of the tasks
ahead of us. How do you eat an elephant? One piece at a time.

Large-scale mobilization requires a focus on people at all levels,
empowering them to discover and make the changes that will help
them most; showing them the long-term vision but enabling them to
aim for their next target condition; and experimenting with improve-
ments, not just swimming against a tide of work.

Think evolution, not transformation. Think power of the people, not
of the board. Think daily, constant improvement and adaptation, not
one big bang. You are not thinking the impossible. This is the art of
the possible, supported by science.

Making DevOps Evolution Happen
By Helen Beal

http://techwell.com

3
Making DevOps Evolution
Happen

4
You’re Ready for DevOps—
but Is Your Workplace?

7
7 Ways to Change the
Culture for DevOps
Success

10
DevOps in the Trenches:
Get Started with Metrics

11
How Continuous Testing
Is Done in DevOps

14
Shifting Right Offers New
Possibilities for Agile and
DevOps Teams

18
Embedding Performance
Engineering into
Continuous Integration
and Delivery

19
Making DevOps Evolution
Happen: A Conversation
with Helen Beal

22
TechWell Hub Takeovers

24
Additional Resources

4C O P Y R I G H T 2 0 2 0

I N T R O D U C I N G D E V O P S I N T O Y O U R P R O J E C T eGuide

DevOps is gathering pace. More and more organizations are recog-
nizing that by encouraging collaboration, cooperation, and commu-
nication, they can release features faster and offer advantages to
customers sooner.

That’s the promise, but in order to adopt DevOps, organizations
need to be able to embrace the openness it requires, change the
way they function, encourage experimentation and innovation, and
work across departmental silos.

It’s not as easy as it sounds, and the reason lies in an academic
paper written by Ron Westrum, an American sociologist, in 2004.
Originally published in Quality and Safety in Health Care, an
international peer-reviewed journal for health professionals, “A
Typology of Organisational Cultures” is as relevant today as it was
then. Importantly, the model he created is applicable across every
industry sector.

Westrum wrote the paper following research into the belief that
organizational cultures shape many facets of performance. He was
looking in particular at the safety aspects of health care, but he used
his knowledge of organizational dynamics from many industries,
going back decades.

What Is an Organizational Culture?
Westrum defines the culture within organizations as “the patterned
way that an organization responds to its challenges, whether these
are explicit (for example, a crisis) or implicit (a latent problem or
opportunity).”

He called out the way organizations process information as a type
marker for culture, and he identified three patterns, each created
and shaped by the focus of management and the response of the
workforce to that focus:

Westrum discovered that each of these organizational types influ-
ences activities such as communication and cooperation, which caus-
es organizations to respond characteristically to problems and to
opportunities for innovation. Indeed, the way they process informa-
tion and behave is predictable in almost every case.

You’re Ready for DevOps—but Is
Your Workplace?
By Matt Hilbert

http://techwell.com

3
Making DevOps Evolution
Happen

4
You’re Ready for DevOps—
but Is Your Workplace?

7
7 Ways to Change the
Culture for DevOps
Success

10
DevOps in the Trenches:
Get Started with Metrics

11
How Continuous Testing
Is Done in DevOps

14
Shifting Right Offers New
Possibilities for Agile and
DevOps Teams

18
Embedding Performance
Engineering into
Continuous Integration
and Delivery

19
Making DevOps Evolution
Happen: A Conversation
with Helen Beal

22
TechWell Hub Takeovers

24
Additional Resources

5C O P Y R I G H T 2 0 2 0

I N T R O D U C I N G D E V O P S I N T O Y O U R P R O J E C T eGuide

Pathological cultures are created within organizations by individuals
who focus on personal power and the hoarding of information to
gain advantage. The management style is typically domineering,
with innovation and creativity discouraged because they threaten
the status quo.

Bureaucratic cultures emerge where the emphasis is on following
rules and defending departmental turf. Whether it’s good for the
organization or not, existing procedures and practices are not ques-
tioned, and change is seen as a predicament that must be subjected
to intense scrutiny.

Generative cultures arise when the motivation is the broader mission
of the organization. This creates a climate that encourages the solv-
ing of problems rather than seeking the cause of them and supports
innovation and cooperation within and across departments.

It’s interesting to note here that the cultures Westrum talks about
can exist throughout an organization or within units or depart-
ments of an organization. One part of an organization may be
pathological while another is generative, the driver being the
leadership in place, because it is the preoccupations of individual
leaders that shape cultures.

The bureaucratic type of culture is also often the one that organiza-
tions or departments default to when there is no politics in play at
one end of the spectrum or mission to aim for at the other.

You can probably guess where this is going. You may even recog-
nize which column of Westrum’s Three Cultures Model the organi-
zation you work for fits into … and also where DevOps is more likely
to take hold.

By its very nature, DevOps requires cooperation, collaboration, and a
culture that welcomes change. So the farther right your organization
sits in the model, the better the fit with DevOps.

Can Organizational Cultures Change?
If you work in a department or organization with a pathological or
bureaucratic culture, you might be thinking DevOps will never be
an option. Encouragingly, however, in the conclusion to his paper,
Westrum writes, “By changing the culture, virtually everything can
change—trust, openness, confidence, and even competence.”

The key is to influence the leadership style by, for example, refer-
encing sources like The State of DevOps Report from Puppet and
DevOps Research and Assessment (DORA) to demonstrate the busi-
ness benefits DevOps can bring to an organization. You also could
try using a DevOps approach to resolve a small but difficult issue.
Doing so may open eyes to a better way of doing things.

And cultures in the same organization can change over time, de-
pending on the management style in place. Westrum himself, for
example, uses two different examples from NASA to illustrate how
a generative culture solved a problem under one flight director and
how a bureaucratic culture prevented problems being solved under
the leadership of another.

When an oxygen tank exploded on board the Apollo 13 spacecraft
in April 1970, it left the three-man crew stranded in the Command
Module with rising levels of carbon dioxide and an apparently impos-
sible journey home. Mission Control didn’t give up. While the famous
line from the Apollo 13 movie, “Failure is not an option,” was never
actually said, that was the attitude.

By its very nature, DevOps
requires cooperation,
collaboration, and a culture
that welcomes change.

http://techwell.com

3
Making DevOps Evolution
Happen

4
You’re Ready for DevOps—
but Is Your Workplace?

7
7 Ways to Change the
Culture for DevOps
Success

10
DevOps in the Trenches:
Get Started with Metrics

11
How Continuous Testing
Is Done in DevOps

14
Shifting Right Offers New
Possibilities for Agile and
DevOps Teams

18
Embedding Performance
Engineering into
Continuous Integration
and Delivery

19
Making DevOps Evolution
Happen: A Conversation
with Helen Beal

22
TechWell Hub Takeovers

24
Additional Resources

6C O P Y R I G H T 2 0 2 0

I N T R O D U C I N G D E V O P S I N T O Y O U R P R O J E C T eGuide

Mission planners worked out a way to use the moon’s gravity to
slingshot the spacecraft back to Earth. NASA engineers improvised a
carbon dioxide filter using a hose taken from a space suit and a myr-
iad of other odd bits and pieces available to the crew. A team of six
engineers from the University of Toronto were called on to calculate
the exact pressure required to separate the Lunar Module from the
Command Module on re-entry.

At 12:07 p.m. on April 17, 1970, the Command Module of Apollo 13
splashed down in the South Pacific Ocean. All three crew members
survived—a generative culture at work.

Fast-forward to January 16, 2003, and the launch of the space shuttle
Columbia from Kennedy Space Center. During launch, a large piece
of thermal insulation from the external fuel tank broke off and dam-
aged the left wing of the orbiter spacecraft.

While the two-week mission went ahead, some NASA engineers were
concerned about how the damage would affect re-entry when the
orbiter returned. They requested imaging of the orbiter to determine
the level of damage. Repeated requests were ignored and, in some
cases, quashed. Worried, a former NASA flight director worked out-
side official NASA channels to get the imaging. He, too, was ignored.

Instead, staff relied on a damage prediction spreadsheet created
to calculate the impact severity of ice pellets the size of cigarette
butts. The piece of thermal insulation that struck the wing was the
size of a suitcase.

The attitude of senior NASA managers was influenced by a belief
that nothing could be done if severe damage was detected, so they
opted to keep the orbiter crew in the dark about the situation.

At 9:00 a.m. on February 1, 2003, the orbiter disintegrated in the sky
over Dallas, Texas, on re-entry. Hot atmospheric gases had penetrat-
ed the damage in the left wing and destroyed its internal structure,

causing the spacecraft to break apart. All seven crewmembers died.
This is a tragic example of a pathological culture at work.

Can You Introduce an Organizational Culture?
We don’t all work at NASA, or even do jobs that involve saving lives.
Most of us, however, want to work for an organization where the
culture encourages innovation and collaboration and lets us do the
right thing. So, what can you do to introduce a culture that is more
responsive to DevOps?

If you work for an organization with a pathological culture, DevOps
probably isn’t an option. Cooperation and collaboration are actively
discouraged, so the glue needed to connect dev and ops is missing.
If you really want to do DevOps, you’re out of options here, and it
might be worth moving on.

In bureaucratic organizations, introducing DevOps is possible, but
there will be problems. Think soft DevOps here, with long lead times
and planning meetings before a tentative first step is taken. Patience
is key, but conversely, once DevOps is successfully introduced, it will
become the new norm and take its place in the rulebook.

Generative organizations are where DevOps will be seen as a natural
next step, if it’s not in place already. Every facet of their makeup
matches the advantages of DevOps. Perhaps unsurprisingly, We-
strum mentions a case study and anecdotal evidence that demon-
strate how the cooperation and empowerment within generative
organizations makes them more effective.

So if you’re ready for DevOps, take another look at Westrum’s model
and decide where your organization sits within it. The next step will
be down to you.

http://techwell.com

3
Making DevOps Evolution
Happen

4
You’re Ready for DevOps—
but Is Your Workplace?

7
7 Ways to Change the
Culture for DevOps
Success

10
DevOps in the Trenches:
Get Started with Metrics

11
How Continuous Testing
Is Done in DevOps

14
Shifting Right Offers New
Possibilities for Agile and
DevOps Teams

18
Embedding Performance
Engineering into
Continuous Integration
and Delivery

19
Making DevOps Evolution
Happen: A Conversation
with Helen Beal

22
TechWell Hub Takeovers

24
Additional Resources

7C O P Y R I G H T 2 0 2 0

I N T R O D U C I N G D E V O P S I N T O Y O U R P R O J E C T eGuide

The hard part of successful DevOps isn’t implementing the technol-
ogy; in fact, that’s relatively straightforward to do. Essentially, the
technology side is about automation, focusing on infrastructure as
code, and creating (and enforcing) a pipeline process.

The difficult part is ensuring you have the right culture in your orga-
nization. You need to break down silos and align competing priori-
ties and individual incentives to gain real benefits from DevOps.

First off, why should you move to DevOps? There’s clearly an in-
creasing push behind it, coming from all levels of the organization,
as well as major business thinkers. Economist James Bessen says
that when software is core to business operations, it tilts the playing
field in favor of those who use it most effectively. DevOps is one way
to do this.

DevOps creates a more agile business that can respond more quickly
to changing customer needs, helping ensure the company adds
value and grows. At a developer level, we all want to work for cool
companies like Spotify and Netflix that are built on DevOps and use
technology as a business differentiator. And make no mistake, these
companies know that encouraging a DevOps culture attracts talent
that, in turn, helps them deliver more value to their business.

However, a major point about many of these cool companies is that,
as digital-first businesses, they’ve grown up with DevOps. For those
who work in established, more traditional organizations, there are
three key challenges to face when implementing DevOps:

• A need to overcome departmental silos: Silos inevitably create
issues, like development not communicating with operations,
projects competing for resources, and teams jealously guarding
information. This leads to problems when updates are deployed,
and a blame culture emerges

• Clashing incentives: If your individual or team objectives (and
bonus) are based on specific targets, it’s human nature that this
is what you’ll focus on. That doesn’t normally fit with the more in-
clusive, open vision that DevOps requires. One team, for example,
may want to focus on one feature, while another thinks a different
feature is important and, in the end, both will be delayed

• Competing priorities: Different roles have different priorities that
can appear to be in opposition. For example, a database admin-
istrator or other member of an ops team is charged with keeping
systems up and running and minimizing downtime. That means
they’re going to be suspicious of faster development approaches
that might lead to performance or dependency issues conflicting
with their own goals and targets

7 Ways to Change the Culture for
DevOps Success
By Steve Jones

http://techwell.com

3
Making DevOps Evolution
Happen

4
You’re Ready for DevOps—
but Is Your Workplace?

7
7 Ways to Change the
Culture for DevOps
Success

10
DevOps in the Trenches:
Get Started with Metrics

11
How Continuous Testing
Is Done in DevOps

14
Shifting Right Offers New
Possibilities for Agile and
DevOps Teams

18
Embedding Performance
Engineering into
Continuous Integration
and Delivery

19
Making DevOps Evolution
Happen: A Conversation
with Helen Beal

22
TechWell Hub Takeovers

24
Additional Resources

8C O P Y R I G H T 2 0 2 0

I N T R O D U C I N G D E V O P S I N T O Y O U R P R O J E C T eGuide

Overcoming these challenges is about building the right type of
DevOps team to suit your business and people. This will vary depend-
ing on your culture and on factors such as your product set (fewer
products means fewer silos), the effectiveness of tech leadership, the
appetite and ability to change, and your capacity and skills.

The excellent Team Topologies book and website gives some exam-
ples of the types of teams that can help you successfully introduce
DevOps—and the antipatterns that undermine them. Of the nine ex-
amples they list, some of the most common models I’ve seen include:

Dev and Ops Collaboration: Think
of this as a perfect Venn diagram,
with dev and ops overlapping just
so. While this is highly effective,
embedding this model fully does
require strong technical leadership
and an open culture.

Fully Shared Ops Responsibilities: This is
more of an eclipse, with little or no sepa-
ration between dev and ops teams. This
model tends to appear in digital-first busi-
nesses that have grown up around a single
product and is difficult to sustain in more
traditional organizations.

Dev and DBA Collabora-
tion: This aims to bridge
the gap between developers
and database administrators
(DBAs) by incorporating a
database capability from the

DBA team, complemented with a database capability (or specialism)
from the dev team. This gives a more holistic view of the database
and thus aids communication and DevOps flows.

In my experience, whichever model you choose, there are seven
ways you can maximize your chances of DevOps success.

1. Allow autonomy
Empowering teams is one of the key tenets of DevOps. That means
giving them the freedom to decide how they build software, rather
than micromanaging them. Clearly this isn’t a recipe for anarchy;
they still need to be held responsible and accountable, and to ensure
their systems thinking and workflow matches that of other teams.
It’s more about letting them agree among themselves how they’re
going to work.

Will they be pair programming, for example, or using formal code
reviews? Who are the best people to work on different elements of
the project? If they’re using branching, how often will new code be
committed to the shared repository? The answers to questions like
these will give the team real ownership of the project, while at the
same time improving the way they work.

2. Improve productivity
The biggest enemy of productivity is noise—not noise as in a loud
working environment, but noise as in distractions like telephone
calls, emails, meeting requests, meetings, questions from other
teams, “urgent” messages on channels like Slack … you get the pic-
ture. All the stuff a normal working day throws at you.

The biggest enemy of
productivity is noise—not
noise as in a loud working
environment, but noise as
in distractions.

http://techwell.com

3
Making DevOps Evolution
Happen

4
You’re Ready for DevOps—
but Is Your Workplace?

7
7 Ways to Change the
Culture for DevOps
Success

10
DevOps in the Trenches:
Get Started with Metrics

11
How Continuous Testing
Is Done in DevOps

14
Shifting Right Offers New
Possibilities for Agile and
DevOps Teams

18
Embedding Performance
Engineering into
Continuous Integration
and Delivery

19
Making DevOps Evolution
Happen: A Conversation
with Helen Beal

22
TechWell Hub Takeovers

24
Additional Resources

9C O P Y R I G H T 2 0 2 0

I N T R O D U C I N G D E V O P S I N T O Y O U R P R O J E C T eGuide

The problem is that while this noise might appear to improve com-
munication, it can also drive down the quality of code. Every inter-
ruption and unexpected diversion introduces stumbling blocks to
the flow of coding, which can result in errors.

Solutions are to minimize meetings (and the length of meetings),
introduce “no-interruptions time” on calendars so team members
can focus on only the work, and have one person on the team each
day handling any questions or problems that come up.

3. Require transparency
Information sharing and transparency is vital to breaking down silos
and encouraging collaboration. Every team member should have
access to source code, for example, so they can see what’s been
done before, and the backlog, so they know what to prioritize next.
Similarly, metrics should be shared, as well as information about
incidents and lessons learned. This openness around code, knowl-
edge, data, and best practices will bring walls down and contribute
to real teamwork.

4. Encourage diversity
DevOps brings together people with different skill sets, and it only
delivers results when you embrace this diversity. The alternative,
often called groupthink, is a natural result of people congregating
around others with the same mindset, but it can lead to teams either
heading in the wrong direction or going nowhere because no one
wants to upset the applecart.

Teams made up of people with diverse skills, styles, and ways of
thinking lead to higher productivity because strengths in one area

are balanced with strengths in others. This is particularly important
with the rise of full-stack developers and the need for everyone to
have a variety of skills.

5. Learn from failures
In the slow-moving, silo-based model of working, people are often
afraid to shout out when they make a mistake or to share any les-
sons they’ve learned because it might hurt their careers. This is the
antithesis of DevOps and is the perfect way to discourage innovation
and prevent the kind of creativity that results in great code.

Instead, DevOps calls for recognizing mistakes and seeing them
as an opportunity for everyone to learn, rather than an issue to be
blamed for. A good approach is to embrace blameless root-cause
analysis techniques and to enable constant improvements.

6. Recognize your peers
Everyone likes and responds well to justified praise, so make sure
that the whole team recognizes and celebrates achievements. And
this isn’t just about the consistent top performers; everyone in the
team has a different level of experience and skill, so praise their
major accomplishments equally.

7. Have fun!
You can’t expect to build a team by just bringing together a group
of people from diverse backgrounds. You need to encourage a team
ethos through bonding sessions that enable your people to get to
know their colleagues as individuals in a less formal, more social
environment. That will help team dynamics and underpin openness
and understanding.

Changing your culture and breaking down silos is at the heart of
successfully adopting DevOps. Move beyond thinking about technol-
ogy alone and look at the people side of the equation. Then you’ll be
able to create a successful team that delivers the benefits of DevOps,
whatever type of organization you are.

Changing your culture and
breaking down silos is at the heart
of successfully adopting DevOps.

http://techwell.com

3
Making DevOps Evolution
Happen

4
You’re Ready for DevOps—
but Is Your Workplace?

7
7 Ways to Change the
Culture for DevOps
Success

10
DevOps in the Trenches:
Get Started with Metrics

11
How Continuous Testing
Is Done in DevOps

14
Shifting Right Offers New
Possibilities for Agile and
DevOps Teams

18
Embedding Performance
Engineering into
Continuous Integration
and Delivery

19
Making DevOps Evolution
Happen: A Conversation
with Helen Beal

22
TechWell Hub Takeovers

24
Additional Resources

10C O P Y R I G H T 2 0 2 0

I N T R O D U C I N G D E V O P S I N T O Y O U R P R O J E C T eGuide

While it is nice when an enterprise recognizes the value of getting
everyone working together in an end-to-end value stream, the reality
is that’s not where most DevOps initiatives start. Often, one particu-
lar silo decides there is value in working more closely with others and
seeks ways to do so.

I call this “DevOps in the trenches,” and while it’s not ideal, it is a way
to get DevOps bootstrapped and gain some benefits from a more
collaborative delivery process.

Here are some tips for how to get started doing DevOps in the
trenches, with key DevOps metrics to help.

If you are in software development, work with testing to decrease
the cycle time it takes to build and test changes. Benchmark how
long it takes for a change to get through your build and test process,
and then brainstorm with your testing organization about what you
ultimately want your cycle time to be.

Use this metric as a forcing function to discuss progress, either
during one of your daily standups or at a quick meeting each week.
Help improve this number by putting in place a robust continuous in-
tegration capability that incorporates appropriate testing (static and
dynamic) into the many builds you should be doing each day.

If your test organization does not have automation skills, dedicate
time for someone on your development team to serve as a software
development engineer in test (SDET), and help them create a main-
tainable regression suite that can be run frequently. Also build a
simple smoke test for your application that allows testers to validate
that a new build works well enough for them to spend time testing it.

If you are in software testing, work with operations to decrease the
failure rate of your application in production. Often a root cause of
these failures is the manual, untestable, poorly documented pro-
cedures for setting up production environments and installing and
configuring an application for use.

Benchmark how frequently such deployments fail in the various envi-
ronments your application is set up in—QA, staging, and production.
Ask operations if you can “test” these deployment procedures and
more clearly specify the steps involved.

Since testing production deployments can impact production quality,
do these tests in any production-like environment, like staging. Then
have a tester sit with operations the next time they do a deployment
and observe how testable the production deployment process is.

Meet regularly with operations to discuss the deployment failure rate
you are tracking and other ways to improve the testability of your
deployments.

If you are in operations, work with development to decrease the
time it takes to fix defects found in production. Doing so will begin to
reduce the mean time to repair (MTTR) an application when it fails.

Benchmark how long it takes tickets to be closed, and use this num-
ber to frequently discuss with development ways to better collabo-
rate to restore service quicker. Evaluate your ticketing process and
look for inefficiencies, points of confusion, and queues where prog-
ress is blocked behind a process bottleneck, and seek to reduce or
remove them. Invite someone from development to a weekly meet-
ing to discuss outstanding tickets and progress. Review the time it is
taking to close tickets, whether it is trending up or down, and other
ways to improve the process.

DevOps in the Trenches:
Get Started with Metrics
By Jeffery Payne

http://techwell.com

3
Making DevOps Evolution
Happen

4
You’re Ready for DevOps—
but Is Your Workplace?

7
7 Ways to Change the
Culture for DevOps
Success

10
DevOps in the Trenches:
Get Started with Metrics

11
How Continuous Testing
Is Done in DevOps

14
Shifting Right Offers New
Possibilities for Agile and
DevOps Teams

18
Embedding Performance
Engineering into
Continuous Integration
and Delivery

19
Making DevOps Evolution
Happen: A Conversation
with Helen Beal

22
TechWell Hub Takeovers

24
Additional Resources

11C O P Y R I G H T 2 0 2 0

I N T R O D U C I N G D E V O P S I N T O Y O U R P R O J E C T eGuide

The adoption of DevOps practices is dramatically increasing through-
out many different industries, mostly due to companies recognizing
the numerous benefits DevOps is able to deliver.

DevOps does speed up your processes and make them more effi-
cient, but companies that solely focus on speed and ignore quality
aspects are likely to suffer a huge blow. Teams should focus first on
quality by reducing defects and bugs before working on speeding up
their operations.

DevOps is all about better enabling the software testing process to
deliver quality results within a shorter time frame. Consequently,
quality assurance is an important aspect of the DevOps methodolo-
gy. Integrating QA within DevOps helps companies focus on giving
their clients quality software before it ships.

Integrating QA within DevOps also plays a vital role in managing
risks by ensuring the application is robust and stable throughout the
development process. Continuous testing as part of a DevOps meth-
od helps detect bugs quickly, when they are easier and less expen-
sive to fix, ensuring your application is fit for usage and enhancing a
good user experience.

QA should not live outside the DevOps environment; it should be a
fundamental part. But if your DevOps ambitions have started with
only the development and operations teams, it’s not too late to loop
in testing. You must integrate QA into the lifecycle in order to truly
achieve DevOps benefits.

Why Should You Perform Continuous Testing In
DevOps?
Software projects, websites, and applications are not static. They
require regular updates and real-time changes to fulfill all the set
requirements of the clients.

These changes used to be time-consuming and perilous, but now
they can be attained more easily through continuous integration,
continuous deployment, and continuous testing.

DevOps allows software testing teams to easily upgrade and deliver
various products without interfering with their quality. That’s why
most DevOps enterprises begin with the adoption of continuous
integration practices: to ensure that everything works together.

Continuous testing involves testing a software application beginning
in its early stages and automating testing throughout the devel-
opment lifecycle. This helps the team examine the quality of the
product at every stage of the continuous delivery process. And this
process is not limited to only testers and developers; it also involves
the contribution of stakeholders, operations, and even the customer.
Continuous testing is an integral factor in the DevOps equation.

If continuous testing is performed properly, it delivers quick and
uninterrupted insight into the quality of every new build of your soft-
ware. This information can help you analyze whether the application
is prepared to go through the delivery pipeline.

How Continuous Testing Is Done
in DevOps
By Junaid Ahmed

http://techwell.com

3
Making DevOps Evolution
Happen

4
You’re Ready for DevOps—
but Is Your Workplace?

7
7 Ways to Change the
Culture for DevOps
Success

10
DevOps in the Trenches:
Get Started with Metrics

11
How Continuous Testing
Is Done in DevOps

14
Shifting Right Offers New
Possibilities for Agile and
DevOps Teams

18
Embedding Performance
Engineering into
Continuous Integration
and Delivery

19
Making DevOps Evolution
Happen: A Conversation
with Helen Beal

22
TechWell Hub Takeovers

24
Additional Resources

12C O P Y R I G H T 2 0 2 0

I N T R O D U C I N G D E V O P S I N T O Y O U R P R O J E C T eGuide

For example, when the code in a source code server like Jenkins is
verified by developers, a set of automated unit tests is executed
in the continuous process. If the tests don’t pass, the build will be
rejected, and the developers will be notified about it. If the tests
pass, the code will be sent to the QA servers for functional and load
testing. Then those tests are executed in parallel, and if they pass the
build, the application will be deployed in production.

Key Points for Continuous Testing Adoption
Before you begin implementing continuous testing in your team,
there are a few points to keep in mind.

The idea of continuous testing is to implement testing early in the
software development lifecycle and at each branch involved in your
CI/CD (continuous integration and delivery) pipeline. So before you
transition a code change to the production environment, you should
already have it validated at the staging ones.

This could be challenging, as you need to make sure that all your
staging environments are exact replicas of your production. This
requires more resources, bandwidth, and infrastructural cost. And
even if you do have all the changes pushed to the staging environ-
ments, you can’t be sure about pushing them to production just be-
cause they worked in the staging environments, as your production
web application will usually be facing a considerable amount of user
interaction. The fact that there is more web traffic in your production
environment compared to the stage environment is one of the com-
mon things testers often forget. If you are short on the resources
and investment required to maintain different stage testing environ-
ments, then continuous testing is probably not a good idea for you.

You also must be ready with your tools arsenal. You need to have
the right automation tools on board for effective implementation of
continuous testing in DevOps.

This means you need to have the tools required for each layer of the
test automation pyramid—UI testing, API testing, and unit testing—

because you can’t expect one tool to cover everything for you. For
example, if you are performing automated browser testing, you would
require unit testing frameworks to validate your code changes at an
earlier stage in the continuous deployment pipeline. However, at a lat-
er stage, you would need an end-to-end test automation framework.

In continuous testing, you are testing a single change on multiple
test environments before deploying into production. A release may
contain a bucket of feature changes, so you will be testing numer-
ous code changes at multiple test environments, and for each code
change you also need to perform regression testing on each stage
environment. All of this could be time-consuming unless you know
how to put parallel testing to best use. Many automation frame-
works can execute multiple test scripts simultaneously, which will
speed up the continuous testing through your CI/CD pipeline.

Also be sure to recognize false negatives and false positives. They
are more common than you may know! When you execute a test
automation script, it may show an execution error even if the system
is working fine, or the automation testing script may show the test
execution as successful even when the system met with errors. While
either is dangerous, false positives can be more devastating because
you believe everything is good to go and then you get an outage.

Plan your rollbacks thoroughly. Even if you use all the best prac-
tices for continuous testing and CI/CD, there is no guarantee that
the build won’t break in production. Always be ready for the worst
scenarios. Make sure your data is backed up before you push chang-
es to production. In case things go south, you can roll back to the
previous production version quickly and perform a round of smoke
testing to ensure the web application functions well again.

You need to have the right
automation tools on board for
effective implementation of
continuous testing in DevOps.

http://techwell.com

3
Making DevOps Evolution
Happen

4
You’re Ready for DevOps—
but Is Your Workplace?

7
7 Ways to Change the
Culture for DevOps
Success

10
DevOps in the Trenches:
Get Started with Metrics

11
How Continuous Testing
Is Done in DevOps

14
Shifting Right Offers New
Possibilities for Agile and
DevOps Teams

18
Embedding Performance
Engineering into
Continuous Integration
and Delivery

19
Making DevOps Evolution
Happen: A Conversation
with Helen Beal

22
TechWell Hub Takeovers

24
Additional Resources

13C O P Y R I G H T 2 0 2 0

I N T R O D U C I N G D E V O P S I N T O Y O U R P R O J E C T eGuide

Keep in mind that when you roll back from the production environ-
ment, you can’t just validate your pre-production situation and commit
the changes again. You need to evaluate the entire pipeline to make
sure there are no loose ends, as well as all your test environments,
because you don’t want to postpone the same release cycle twice.

Integrating QA and DevOps
The testing and technical teams should work hand in hand to ensure
quality throughout every step in the software development lifecycle.

When integrating QA into DevOps practices—known by the term
“QAOps”—the testing team should adapt and adopt certain quality
processes:

• They should strive to detect bugs at the earliest point in the devel-
opment lifecycle and prevent potential bugs from reappearing in
the production cycle

• They are responsible for highlighting issues in the process and
recommending necessary changes

• They must ensure that all the environments required for testing
are standardized with automated deployment

• Apart from finding and preventing bugs, they should also focus on
improving the overall quality of the product

Some people in the software industry think the requirement for QA
is decreasing with the rise of DevOps due to automated processes.
But that’s not completely true. Though automated testing tech-
niques are advanced and fast, they also require continuous human
intervention. Companies that lack enough QA professionals and re-
sources are not likely not to achieve their customers’ requirements,
mostly when it comes to updates and continuous changes.

DevOps was created to make developers think in synchronization
with software testers, not to replace them. Software development
processes are becoming faster through continuous deployment to
meet ever-growing customer demands, and integrating QA with
DevOps can help you fulfill all your objectives.

The integration of the QA process into DevOps also helps you man-
age various risks, making sure the end results are robust and more
stable. QAOps is like a fitness regimen for software, as it makes it
easy to detect bugs frequently and on time so you can tell when your
applications are fit to run.

There are a couple of patterns for integration of QA into DevOps that
teams can adopt:

• Try conducting an exploratory test before any new feature is
merged into the master codebase. The tryout tests are designed to
ensure the system is adequately covered to deliver accurate results

• Before you transmit a code change, make sure that your QA,
developers, and other stakeholders involved in the continuous
testing process are ready with their testing checklist. This checklist
should include all the valid and invalid test scenarios they need
to consider along with the expected behavior over specific test
environments

Every business venture, company, and enterprise operates differ-
ently, so the ways of adopting QAOps may also differ. But the two
suggestions above can be implemented across any software team.

You cannot deliver a comprehensive and quality service without a QA
testing strategy, so QA is essential to the DevOps process. Integrat-
ing QA processes into DevOps operations helps both the testing and
technical teams handle dynamic software environments and situa-
tions, deliver at speed throughout the CI/CD pipelines, and ensure
the quality of the product—as well as customer satisfaction.

Though automated testing techniques
are advanced and fast, they also
require continuous human intervention.

http://techwell.com

3
Making DevOps Evolution
Happen

4
You’re Ready for DevOps—
but Is Your Workplace?

7
7 Ways to Change the
Culture for DevOps
Success

10
DevOps in the Trenches:
Get Started with Metrics

11
How Continuous Testing
Is Done in DevOps

14
Shifting Right Offers New
Possibilities for Agile and
DevOps Teams

18
Embedding Performance
Engineering into
Continuous Integration
and Delivery

19
Making DevOps Evolution
Happen: A Conversation
with Helen Beal

22
TechWell Hub Takeovers

24
Additional Resources

14C O P Y R I G H T 2 0 2 0

I N T R O D U C I N G D E V O P S I N T O Y O U R P R O J E C T eGuide

The shift-right concept originates from testing. But agile and DevOps
teams also can use it to improve their systems and service to the
client. However, there is a complicating factor: Different people have
different explanations for what shifting right is.

Let’s look at the different forms of shifting right, what the potential
benefits are, and who should ideally be involved in your shift-right
process.

The Different Forms of Shifting Right
The idea of shifting left, or testing earlier in the development lifecy-
cle, has been around for a while. Analogous to this is shifting right,
or performing test-like activities later in the development lifecycle
and beyond. This includes getting feedback from the users.

We have identified three different forms of shifting right.

The first is testing in production. Some people, especially testers,
start to panic when they hear that phrase—the client could be con-
fronted with bugs! But there are definitely situations in which testing
in production can be a good option.

First of all, testing in production is mostly on top of unit tests, func-
tional tests, and nonfunctional tests, so we already know the product
is working. But do the users use it in the right way? Can they find the
new feature and understand it? And is it working on all devices used
by our customers? These are the questions that can best be answered
by testing in production. At the same time, we can monitor the ser-
vices we deliver in order to make sure we deliver them correctly.

A lot of organizations already do a relatively limited form of test-
ing in production. After a deployment, or when the organization
goes into production several times a day, the testers make sure the
system is available, the interfaces are up, and the functionality is
working. Some organizations “follow” the first transactions though
the system, sometimes even continuously.

We sometimes get questions about whether this should be called
testing or monitoring, but we think this discussion is irrelevant. One
way or the other, the team is responsible for these activities, so they
should be done if they add value. The main goal is to be sure the sys-
tem works properly, and it’s undeniable that testing skills are useful
for activities like this.

Shifting Right Offers New Possibilities
for Agile and DevOps Teams
By Jan Jaap Cannegieter and Tijs Latiers

http://techwell.com

3
Making DevOps Evolution
Happen

4
You’re Ready for DevOps—
but Is Your Workplace?

7
7 Ways to Change the
Culture for DevOps
Success

10
DevOps in the Trenches:
Get Started with Metrics

11
How Continuous Testing
Is Done in DevOps

14
Shifting Right Offers New
Possibilities for Agile and
DevOps Teams

18
Embedding Performance
Engineering into
Continuous Integration
and Delivery

19
Making DevOps Evolution
Happen: A Conversation
with Helen Beal

22
TechWell Hub Takeovers

24
Additional Resources

15C O P Y R I G H T 2 0 2 0

I N T R O D U C I N G D E V O P S I N T O Y O U R P R O J E C T eGuide

Case 1
A big online web shop scheduled a course to be delivered. The course
was planned for the day before a new release was to be deployed, and
the team members were supposed to have time. But the course day was
not a success.

The new functionality was a shop-in-shop on the main web shop, the first
time the organization deployed something like this. Because of the com-
plexity and the inexperience with this kind of functionality, the DevOps
team was more focused on the deployment. On big screens the team
members could see the first visitors going to this new part of the website
and ordering products. The deployment was not fault-free, and the team
had to correct some bugs and deploy new versions immediately.

At the end of the day some minor things were disabled in production, but
the main process worked well. We had a drink and rescheduled the course.

Another form of shifting right can be pretty close to testing in produc-
tion but is not necessarily: A/B testing and canary testing. With A/B
testing, the team develops two solutions for a feature and presents
both to the users, who then give their opinions on the best option.
This can be a group of user representatives, such as user acceptance
testers, or it can be real users in production. Canary testing is making
a new feature available to a small number of users, with the team

monitoring how they use it. Both A/B testing and canary testing could
be done in production, but they don’t necessarily have to be.

Drawbacks of A/B testing and canary testing in production is that it
is sometimes difficult to ask the user what they liked more, simply
because you sometimes don’t know who the user is. And in the
case of A/B testing in production, every user sees only one solution,
so they can’t compare it to anything. Sometimes you can measure
things like conversion rate or the number of times a process is com-
pleted, but this is not always possible.

For this reason A/B testing and canary testing are sometimes done
in a user acceptance test, where the testers see both solutions (A/B
testing) or see the old and the new feature (Canary testing).

Case 2
An A/B test was performed with a controlled group of users. This was not
done in production, but in a user acceptance test environment. We gave
half the users solution A and half the users solution B. After they tested
the new features (which included much more than this A/B test), we
asked the users how they liked the solution by means of some questions
they had to rate on a scale of one to five.

The two solutions were almost equally rated, and the general idea was,
who cares, they are both good. So it didn’t really matter which solution
we chose. But we spent a lot of time designing, developing, and test-
ing the two solutions that could have been spent on building another
feature. What we learned is that A/B testing only adds value when you
have two fundamentally different solutions. Otherwise your time could
be better spent flipping a coin.

The third form of shifting right has to do with measuring the effect
of a change—not only directly after deployment, but over a longer
period of time. Is the conversion rate higher? Do more users stay
with the process until the end? Do more users use the feature after
the initial launch? Is the intended value delivered with the system or
as an adjustment to an existing system?

Finding defects is not the
main goal of shift right;
measuring the extent to
which the intended value
is realized is.

http://techwell.com

3
Making DevOps Evolution
Happen

4
You’re Ready for DevOps—
but Is Your Workplace?

7
7 Ways to Change the
Culture for DevOps
Success

10
DevOps in the Trenches:
Get Started with Metrics

11
How Continuous Testing
Is Done in DevOps

14
Shifting Right Offers New
Possibilities for Agile and
DevOps Teams

18
Embedding Performance
Engineering into
Continuous Integration
and Delivery

19
Making DevOps Evolution
Happen: A Conversation
with Helen Beal

22
TechWell Hub Takeovers

24
Additional Resources

16C O P Y R I G H T 2 0 2 0

I N T R O D U C I N G D E V O P S I N T O Y O U R P R O J E C T eGuide

This form of shifting right is done in the operations phase and is
about measuring relevant data and translating it into valuable
information for the team and other stakeholders. The development
of a feature costs money, but some organizations don’t bother to
measure whether benefits are realized from the feature. This is what
this third form of testing in production is all about.

Some people say that looking back on whether benefits are reached
is not necessary because the feature is already in production, but we
don’t agree with this. DevOps and agile are about learning in order
to do things better in the future, and the information we get out of
measuring the effect of a change can help us to estimate and prior-
itize changes better. System development is not a one-time project
anymore, but a continuous activity.

Case 3
A development team was responsible for realizing a web application for
a marketplace for specific products. There already were some compa-
rable marketplaces available online, but this new one had some unique
selling points. Before development was started, the team defined the
minimum viable product (MVP), along with measurable benefits in terms
of market share, minimum number of visitors, minimum number of
transaction,s and minimum number of providers.

This set of measurable benefits and the definition of the MVP was
important guidance for both the product owner and the team. Benefits
were measured after implementation, and about three months after
the deployment of the MVP, the goals were met. This generated enough
funds to develop the marketplace further.

It’s All about Value
Regardless of the form your shifting right taks, the aim should be
measuring the value of the system or the change for the customer.
Finding defects is not the main goal of shift right; measuring the
extent to which the intended value is realized is.

Customer value is not always easy to predict up front, and in order
to evaluate it, we need feedback—feedback from real customers,
maybe in production, maybe before we go to production, or maybe
after a longer period of time. In this way shifting right is essential in
the inspect-and-adapt cycle.

The cycle of inspecting and adapting is a useful practice in DevOps
and agile. In the Scaled Agile Framework (SAFe) in particular,
inspecting and adapting is a significant event, held at the end of
each program increment, where the current state of the solution is
demonstrated and evaluated by the train. According to this defini-
tion, inspecting and adapting is limited to a product increment, but
in our opinion, shifting right broadens the use of inspecting and
adapting to user acceptance testing and production.

The inspect-and-adapt cycle focuses on the product, process, and
performance of the team as well as on adjusting the way teams
work to get more value. Seen this way, inspecting and adapting is a
team activity, but shifting right adds value to the inspect-and-adapt
practice from a customer perspective. And customer value is what
it’s all about.

http://techwell.com

3
Making DevOps Evolution
Happen

4
You’re Ready for DevOps—
but Is Your Workplace?

7
7 Ways to Change the
Culture for DevOps
Success

10
DevOps in the Trenches:
Get Started with Metrics

11
How Continuous Testing
Is Done in DevOps

14
Shifting Right Offers New
Possibilities for Agile and
DevOps Teams

18
Embedding Performance
Engineering into
Continuous Integration
and Delivery

19
Making DevOps Evolution
Happen: A Conversation
with Helen Beal

22
TechWell Hub Takeovers

24
Additional Resources

17C O P Y R I G H T 2 0 2 0

I N T R O D U C I N G D E V O P S I N T O Y O U R P R O J E C T eGuide

Case 4
A development team had the task of migrating a big, monolithic system
to a new, multilayer architecture. The maintenance costs of the old
system were high and the system was hard to test, which led to a long
time to market. Due to the amount of time needed for this migration, it
was financially not possible to do the migration in one release.

The solution was to migrate in small, incremental steps. In order to
decide which parts to migrate first, the team installed a logging system
that gave information about which functional parts were used most by
the users—that was the inspect part. Based on the analysis of the user
data, which was gathered for a few months, it was easy to determine
what the MVP was and to make a user-driven roadmap for the migra-
tion—this was the adapt part.

The main lesson learned here was that gathering this kind of informa-
tion is easy to realize and essential for making well-founded, user-driv-
en decisions.

The Tester in Shifting Right
Before looking at the question of whether the tester could have a
role in shifting right, let’s look at another question first: Can all test-
ing be done by means of shifting right?

The answer to that is no. Testing is also finding bugs, investigating
the system, and determining how well the system is working. Shift-
ing right will always be on top of unit testing, functional testing, and
nonfunctional testing.

The second question is whether the tester should execute or orga-
nize the shift-right approach. The theoretical correct answer would
be no, because there is no tester in agile or DevOps. But we all know
that in practice most teams have a team member with testing skills,
at least when a complex product is being built or the quality of the
product is important to the customer.

In our opinion, every team member could have a hand in executing
or organizing shift-right activities. But at the same time, we often
see that testers have the right skills and focus to do these activities.
Good testers have analytical skills, and they know how to investigate
things. The reporting about the benefits of a feature has similarities
to modern test reports. The transition for the tester when it comes
to shifting right involves measuring and evaluating the value after
the usual tests, or even after the system is in production to their
work. If possible, pairing a tester with an operations or DevOps team
member will boost the speed in which the team can shift to the right.

Even if testers are very involved in the shift-right activities, they can’t
do it alone. The tester will have to involve different people from
inside and outside the team, including the product owner or busi-
ness owner, other team members, and clients. Ideally, shifting right
starts with a stakeholder analysis in order to decide who should be
involved, whether shifting right should be used in the inspect-and-
adapt cycle, and how the outcome will be reported. This way the
right people will be involved in the right way.

Shift Right to Serve Your Customers
Shifting right as part of the inspect-and-adapt cycle offers agile
and DevOps teams techniques to measure the value of the system.
Teams should consider each of the possible ways to shift right and
their applicability to the team’s specific context, then proactively
take the initiative and make the shift-right approach a part of their
job. When the right stakeholders are involved, shifting right can help
teams serve their customers better.

Shifting right will always be on top
of unit testing, functional testing,
and nonfunctional testing.

http://techwell.com

3
Making DevOps Evolution
Happen

4
You’re Ready for DevOps—
but Is Your Workplace?

7
7 Ways to Change the
Culture for DevOps
Success

10
DevOps in the Trenches:
Get Started with Metrics

11
How Continuous Testing
Is Done in DevOps

14
Shifting Right Offers New
Possibilities for Agile and
DevOps Teams

18
Embedding Performance
Engineering into
Continuous Integration
and Delivery

19
Making DevOps Evolution
Happen: A Conversation
with Helen Beal

22
TechWell Hub Takeovers

24
Additional Resources

18C O P Y R I G H T 2 0 2 0

I N T R O D U C I N G D E V O P S I N T O Y O U R P R O J E C T eGuide

In the world of continuous integration and continuous delivery (CI/
CD), where technology companies are rapidly deploying code and
infrastructure changes so their application can gain a competitive
advantage, the importance of ensuring good performance has in-
creased tremendously. While functional and unit testing are relative-
ly easier to integrate into these processes, performance engineering
has typically raised more challenges, especially in analyzing the
results and pass/fail decision-making.

My company is currently going through this transformation, and
embedding performance evaluation of the services as part of CI/CD
is a must. Here are some of the challenges we faced and changes we
made across the board to make this happen.

Cultural challenges: If you want to evaluate the performance of
every line of code that is checked in, culture is the most important
yet difficult change required. There were several areas where we
struggled. Performance was an afterthought; teams were focused
on functionality more than performance. There was also a lack of
understanding of performance and scalability needs of the product,
and performance engineers were not part of the agile teams and
weren’t included in the agile ceremonies.

To help alleviate these challenges, we needed to shift the perfor-
mance lifecycle to the left. We empowered our developers to test,
allowing good performance to be baked into the code.

Process changes: We also had to make significant changes in our
Scrum process to create awareness of performance. We made
nonfunctional and performance requirements part of the functional

requirements, which required us to have scalability needs, API con-
tracts, and service-level agreements clearly defined at the story level.
This enabled us to learn what “performance-ready” services mean to
our customers.

We mandated performance as part of the definition of “done” for
sprints and included performance results during sprint demos with
all stakeholders.

Tools and accelerators: At this point we had to make sure we had
the right tools and accelerators to create, execute, and analyze
performance tests at the sprint level, ready to be integrated into the
CI/CD pipeline.

We built a performance engineering platform that manages the
testing cycle of our services, leveraged functional test scripts to
collect browser-side response time, created self-contained tests
that create test data before each test and destroy it after each test,
developed a central repository for all performance metrics, created
an algorithm for dynamic thresholds for pass/fail of each build and
individual REST APIs for test status and decision-making, and auto-
mated defect creations and notifications through our performance
engineering platform.

All our services are in the cloud, making it easier for the performance
environment to expand and contract as needed and adding flexibility
to build and kill new environments. Such benefits can go unnoticed,
but they are a huge driver to implement our test framework that can
scale to address business needs.

Embedding Performance Engineering into
Continuous Integration and Delivery
By Anjeneya Dubey

http://techwell.com

3
Making DevOps Evolution
Happen

4
You’re Ready for DevOps—
but Is Your Workplace?

7
7 Ways to Change the
Culture for DevOps
Success

10
DevOps in the Trenches:
Get Started with Metrics

11
How Continuous Testing
Is Done in DevOps

14
Shifting Right Offers New
Possibilities for Agile and
DevOps Teams

18
Embedding Performance
Engineering into
Continuous Integration
and Delivery

19
Making DevOps Evolution
Happen: A Conversation
with Helen Beal

22
TechWell Hub Takeovers

24
Additional Resources

19C O P Y R I G H T 2 0 2 0

I N T R O D U C I N G D E V O P S I N T O Y O U R P R O J E C T eGuide

Making DevOps Evolution Happen
A Conversation with Helen Beal
By Owen Gotimer

Helen Beal, DevOpsologist at Ranger4, chats with
TechWell community manager Owen Gotimer about
making your DevOps evolution happen, micro-bonus
programs, and the neuroplasticity of squirrels.

What a brilliant question. Yeah, it’s a tough one, isn’t it? And the reason it is so tough actually harks back to the
origins of DevOps really, and its relationship with agile and ITSM, in particular. So agile, as everyone knows, has got
a manifesto, and you can look at it on the internet, and ITSM has something called the ITIL, the IT Infrastructure
Library, which is pretty well known. But both of those were codified in some ways and the guys that originated the
DevOps movement tried very purposefully not to create similar things and have a similar definition. Because they
wanted it to kind of be allowed to evolve in its own way. And that’s been really powerful I think and absolute the
right decision to allow the DevOps movement to grow and evolve and find new ways of talking about things. So it’s
allowed it to really move from something that was very focused initially around agile system administration, to a
place where it is now which is where we’re really looking at the end-to-end value stream and not just the end-to-
end technology value stream, the end-to-end business value stream for a product or a service. So it is very hard to
define. But ultimately, it’s about delivering value faster and more safely. So it’s that throughput and stability and
balance around value outcomes.

Helen Beal

The first question I want to open the discussion with is, what is DevOps?

Owen Gotimer

http://techwell.com

3
Making DevOps Evolution
Happen

4
You’re Ready for DevOps—
but Is Your Workplace?

7
7 Ways to Change the
Culture for DevOps
Success

10
DevOps in the Trenches:
Get Started with Metrics

11
How Continuous Testing
Is Done in DevOps

14
Shifting Right Offers New
Possibilities for Agile and
DevOps Teams

18
Embedding Performance
Engineering into
Continuous Integration
and Delivery

19
Making DevOps Evolution
Happen: A Conversation
with Helen Beal

22
TechWell Hub Takeovers

24
Additional Resources

20C O P Y R I G H T 2 0 2 0

I N T R O D U C I N G D E V O P S I N T O Y O U R P R O J E C T eGuide

With technologists, watching the automation piece is relatively easy, so the big barriers we often have are around
culture. With them, they’ve got some leadership challenges, which again, are fairly common, where it looks like
you’ve got leadership support, but they’re kind of talking the talk but not walking the walk. So we have conversations
about how to really tackle their concerns. Like many people they can’t kind of come to terms with the fact that we can
balance these two things. They’re just seeing speed, and speed is a risk to their stability. So stop talking about deploy-
ment frequency, and actually start talking about approaches to protect production. So start talking about things like
limited blast radius approaches, and architectural approaches, and focus a bit more on tools like application perfor-
mance management and deployment automation and locating and things that really bolster that end of it.

So fundamentally, what we’re trying to do in DevOps and agile is move away from big batch to small batch process-
es, right? And whether we’re talking about a requirements document or system or performance review or a funding
model, they all could be big batch or small batch. So there’s steps you can take. And if your big batch in terms of per-
formance reviews is every 12 months, then maybe start making it every three months. So move to the rolling quarter-
ly wave, as we often call it, in the finance model. That’s what we often try and move to. And then you experiment with
breaking it all down further. And if you’re a very large organization, you don’t actually have to do it with everybody,
immediately. You can experiment with smaller parts of the organization. In technical terms, if we were talking about
this, we’d call it a canary deployment, right? So you can do a canary deployment of micro bonuses or quarterly per-
formance reviews in a part of your organization as well and test it out, experiment with that, inspect the results, get
the feedback, and make a decision on what experiment to try next.

Helen Beal

Helen Beal

What challenges do you face in trying to both deliver things safely and quickly?

As we get more and more distributed around the world, it’s nice to be able to connect with people who aren’t in the
same geographical region as you are necessarily working with you on a day to day basis, and reward those people,
your colleagues that are working on it with you on a day to day basis. So I love the idea of micro bonuses, and I can
certainly see the value in not working towards that end of year performance review. But for a lot of people, that’s
probably scary, because traditionally, that’s how it’s gone. They’ve sat down at the end of the year for a perfor-
mance review. What are some steps teams can take to get away from the idea that performance reviews are the
best way to go about leading those kinds of bonus or incentives?

Owen Gotimer

Owen Gotimer

http://techwell.com

3
Making DevOps Evolution
Happen

4
You’re Ready for DevOps—
but Is Your Workplace?

7
7 Ways to Change the
Culture for DevOps
Success

10
DevOps in the Trenches:
Get Started with Metrics

11
How Continuous Testing
Is Done in DevOps

14
Shifting Right Offers New
Possibilities for Agile and
DevOps Teams

18
Embedding Performance
Engineering into
Continuous Integration
and Delivery

19
Making DevOps Evolution
Happen: A Conversation
with Helen Beal

22
TechWell Hub Takeovers

24
Additional Resources

21C O P Y R I G H T 2 0 2 0

I N T R O D U C I N G D E V O P S I N T O Y O U R P R O J E C T eGuide

READ THE FULL INTERVIEW

Yeah, great question. Something I am quite passionate about, and I’m not alone. I can be a little bit of a purist, and
I kind of don’t apologize to that in some respects, because part of my job is to try and help organizations advance
to the best pattern for them. So the DevOps team, it happens. There’s a couple of problems with creating a DevOps
team, but you can give some organizations the impression that DevOps is done. We’ve got a DevOps team, we’ve
done DevOps. You can create another silo, and that creates all sorts of bad behaviors like handoffs. When the DevOps
team pattern works, it’s when they’re seen as like a tiger team or an evangelizing team that are starting the DevOps
evolution across the organization. So if they become this kind of miscellaneous bucket for work that other people
can’t really be bothered to do, it stimulates the whole growth of that pattern across the organization.

There comes a point in time where you’re like, right,”this is what we’re doing now, this is who we are. If you don’t
want to be on this bus with us doing this thing, then maybe you want to find another bus.” So it sounds pretty harsh,
but in their heads, they must be getting to the same place. We don’t all fit everywhere all the time. The critic role is
actually very useful to us because they’re like the anti-mirror that tells us all the things we need to know about why
people are resisting the change. So we should spend more time with them and really help them understand how it’s
going to better their lives.

Helen Beal

Helen Beal

Do you see that a lot where organizations bring in DevOps teams, and how do you think that either helps or inhibits
their ability to move through their journey?

With DevOps, you often have those naysayers who aren’t aren’t ready to get on board, who don’t think it’s going to
work. What do you do with the naysayers?

Owen Gotimer

Owen Gotimer

http://techwell.com
https://www.agileconnection.com/interview/making-devops-evolution-happen-conversation-helen-beal

3
Making DevOps Evolution
Happen

4
You’re Ready for DevOps—
but Is Your Workplace?

7
7 Ways to Change the
Culture for DevOps
Success

10
DevOps in the Trenches:
Get Started with Metrics

11
How Continuous Testing
Is Done in DevOps

14
Shifting Right Offers New
Possibilities for Agile and
DevOps Teams

18
Embedding Performance
Engineering into
Continuous Integration
and Delivery

19
Making DevOps Evolution
Happen: A Conversation
with Helen Beal

22
TechWell Hub Takeovers

24
Additional Resources

22C O P Y R I G H T 2 0 2 0

I N T R O D U C I N G D E V O P S I N T O Y O U R P R O J E C T eGuide

@Tom Stiehm
What do you see as the biggest challenges to adopting security practices into
DevOps?

@DJ Schleen
Great question! There are a ton of challenges to gain successful adoption. It
depends on which team is trying to implement the practice. Is it the develop-
ment team or the security team - and that differs between companies large
and small. The biggest challenge is to ensure everyone is comfortable with
change and can communicate with candor. Once the culture is there (or grow-
ing), the challenge is to find the best place in an automated pipeline to put
security controls without sacrificing the speed of delivery and deployment.

@John Schultz
DevOps seems to be a buzzword-ish sort of term that a lot of companies say
they are doing, but I’m not really sure what it means.

@Lisa Crispin
It is a culture of the whole team, including operations, working together to not
only deliver tested code, but to be engaged with the code that is already in
production, learning how customers really use it, and responding super fast to
their issues.

Q

Q

A

A

READ THE FULL CONVERSATIONVISIT THE HUB

READ THE FULL CONVERSATION

Each month a thought
leader joins the TechWell
Hub for a Slack Takeover.
These chats give our
community members
an opportunity to
ask questions, share
challenges, and grow as
software professionals by
having conversations with
an expert. Here’s a sample
of some of the questions
and answers from a few
of our DevOps-oriented
Slack Takeovers.

http://techwell.com
https://www.techwell.com/hub-takover/best-practices-devsecops-elite
https://hub.techwell.com
https://www.techwell.com/techwell-insights/2019/08/testing-devops-slack-takeover-lisa-crispin

3
Making DevOps Evolution
Happen

4
You’re Ready for DevOps—
but Is Your Workplace?

7
7 Ways to Change the
Culture for DevOps
Success

10
DevOps in the Trenches:
Get Started with Metrics

11
How Continuous Testing
Is Done in DevOps

14
Shifting Right Offers New
Possibilities for Agile and
DevOps Teams

18
Embedding Performance
Engineering into
Continuous Integration
and Delivery

19
Making DevOps Evolution
Happen: A Conversation
with Helen Beal

22
TechWell Hub Takeovers

24
Additional Resources

23C O P Y R I G H T 2 0 2 0

I N T R O D U C I N G D E V O P S I N T O Y O U R P R O J E C T eGuide

@msowers
Understanding security is extremely challenging. There are so many dimensions and so
much to learn. How should someone get started learning about security?

@Larry Maccherone
One of the guiding principles in my updated DevSecOps Manifesto is, ‘Adopt a few
key practices deeply and universally more than a comprehensive set poorly and spo-
radically.’ The idea is to pick just a few things and focus on those before you spread.
The absolute best bang-for-the-buck thing to start with is analysis for code imported,
aka software composition analysis, or misnamed open source security.

@Jessica Romero
How do you start injecting DevOps in a
team who is not familiar?

@Nathen Harvey
I think it depends on your perspective of
the idea of “DevOps”. Part of the prob-
lem, as I stated early this morning, is that
there is not really an adopted, universally
agreed on definition of that word. But
selling ideas, DevOps or otherwise, starts
with understanding what’s important to
the people you’re selling the ideas to and
challenging them to imagine a new world.

@Sam N
Have you been in a situation where the environment
didn’t encourage DevOps adoption?

@Melissa Benua
So my first instinct is to always try and get down to
the root of the problem. Do they have an idea of
why they need to implement DevOps, from a mon-
etary standpoint? There are significant competitive,
market advantages to companies who have strong
continuous delivery / DevOps practices, such as
increased market agility, increased market cap, in-
creased dev satisfaction and retention, and increased
time-to-mitigate for security issues.

Q

Q Q

A

A
A

READ THE FULL CONVERSATION

VISIT THE HUB

READ THE FULL CONVERSATION READ THE FULL CONVERSATION

http://techwell.com
https://www.techwell.com/techwell-insights/2019/07/building-security-devops-slack-takeover-larry-maccherone
https://hub.techwell.com
https://www.techwell.com/hub-takover/experimenting-your-way-devops-success
https://www.techwell.com/techwell-insights/2019/03/devops-red-flags-slack-takeover-melissa-benua

3
Making DevOps Evolution
Happen

4
You’re Ready for DevOps—
but Is Your Workplace?

7
7 Ways to Change the
Culture for DevOps
Success

10
DevOps in the Trenches:
Get Started with Metrics

11
How Continuous Testing
Is Done in DevOps

14
Shifting Right Offers New
Possibilities for Agile and
DevOps Teams

18
Embedding Performance
Engineering into
Continuous Integration
and Delivery

19
Making DevOps Evolution
Happen: A Conversation
with Helen Beal

22
TechWell Hub Takeovers

24
Additional Resources

24C O P Y R I G H T 2 0 2 0

I N T R O D U C I N G D E V O P S I N T O Y O U R P R O J E C T eGuide

Additional Resources
M O R E I N F O R M A T I O N F O R S O F T W A R E P R O F E S S I O N A L S

N A R R O W Y O U R S E A R C H T O A S P E C I F I C T Y P E O F R E S O U R C E :

Our partner, Coveros, has significant DevSecOps experience and can help organizations implement DevOps with security
in mind or integrate security capabilities into existing DevOps processes. Coveros offers more than a dozen courses on
DevSecOps, DevOps, and security—all of which include best practices taught by industry leaders. Whether you’re looking to
get hands-on experience for yourself, your team, or your organization, Coveros has a learning solution for you.

DevOps & DevSecOps Courses | Software Security Courses | Agile & DevOps Transformations | DevOps Engineering | DevSecOps

AgileConnection Community
AgileConnection brings you the latest in
agile and DevOps principles, practices, and
technologies. Check out articles and interviews
from experienced software professionals and
thought leaders, and join the community to
gain access to member-exclusive content such
as conference presentations, weekly newsletter
updates, Q&A discussions, and more.

DevSecOps Articles
AgileConnection is home to thousands of
DevOps software resources, including articles,
archived Better Software magazine articles,
conference presentations, and interviews with
industry notables. Check out these DevSecOps
articles to read about how to reduce risk,
protect data, and build security into your
DevOps pipeline from the start.

TechWell Conference Presentations
Couldn’t make it to a TechWell conference to
sharpen your security and DevSecOps skills and
knowledge? TechWell conference presentations
are available to AgileConnection members
soon after conferences end. Click here to
join AgileConnection and access conference
presentations related to security and DevSecOps.

Interviews
Each year, TechWell interviews dozens of
software professionals, including well-known
thought leaders, seasoned practitioners, and
respected conference speakers. Click here
to read, listen to, and watch interviews with
DevOps and security experts.

Agile + DevOps Virtual
In light of recent events, TechWell has morphed
the popular Agile + DevOps West conference
into a fully virtual experience this year! From
the comfort of your own digital device, you will
have access to all of the same great content and
experts you have come to expect from an
Agile + DevOps West conference.

DevSecOps Summit at Agile +
DevOps Virtual
The DevSecOps Summit is a fully-virtual,
multi-day series of first-person talks, giving an
ideal perspective on how you and your team
can enable faster application development
with more rapid deployment to production
while integrating security into your DevOps
initiatives. Explore the program here.

Accelerate
Delivery

The TechWell Hub is a great resource to get your questions answered,
help others with problems they’re stuck on, and engage with experts in
software. Follow channels like #DevOps, #DevSecOps, and more.

J O I N
H E R E

http://techwell.com
https://well.tc/5emp
https://well.tc/5emx
https://well.tc/5emf
https://well.tc/5emg
https://well.tc/5emd
https://well.tc/5emi
https://well.tc/5emk
https://well.tc/5emq
https://well.tc/5emq
https://well.tc/5em5
https://well.tc/5em5
https://well.tc/5em3
https://well.tc/5emc
https://well.tc/5emc
https://well.tc/5emc
https://www.coveros.com/?utm_source=wp&utm_medium=digital-pub&utm_campaign=mk-devsecops-eguide-july19-coveros-logo
https://well.tc/5ott

